60481400

@ CONTROL DATA
CORPORATION

CYBER INTERACTIVE DEBUG
VERSION 1
REFERENCE MANUAL

cDC® OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1

LANGUAGE-INDEPENDENT CID COMMANDS

Short

Form Page
CLEAR ,AUXILIARY CAUX 5-1
CLEAR ,BREAKPOINT[,breakpoint-list] CB 5-1
CLEAR,GROUP[,group-list] c6 5-1
CLEAR , INTERPRET cI 5-2
CLEAR, OUTPUT CoUT 5-2
CLEAR, TRAP, type[,trap-list] CT 5-2
CLEAR,VETO cv 5-2
DISPLAY,location [’f“‘“‘“] D 5-12
,format, count

ENTER,value,location[,count] E 5-13
EXECUTE[,1ocation] EXEC 5-14
GO[,location] T 5-14

*

’
HELP |,subject T 5-14

, command-name
JUMP, 1abel T 5-15
LABEL, 1abel T 5-15
LIST,BREAKPOINT[,breakpoint-1list] LB 5-3
LIST,GROUP[,group-list] LG 5-3
LIST,MAP[,place-list] LM 5-5
LIST,STATUS LS 5-5
LIST,TRAP,type[,trap-list] LT 5-5
LIST,VALUES[,place-1list] LV 5-5
MESSAGE, ‘message text’ + 5-15
MOVE,source,destination[,count] M 5-15
NULL Tt 5-16
PAUSE[, ‘message text’] T 5-16

, NORMAL

N

bl -
QUIT | popy T 5-17

JA

{,file—name } T 5-17

,group-name
SAVE ,BREAKPOINT,file-name|[,breakpoint-1list] SAVEB 5-7
SAVE,GROUP, file~name,group~list SAVEG 5-7
SAVE,TRAP,file-name,type[,trap~list] SAVET 5-7
SAVE,*, file—name T 5-7
SET ,AUXILIARY,file-name[,option-list] SAUX 5-8
SET ,BREAKPOINT,location,[first], [last],[step][[]- SB 5-9
SET ,GROUP ,group—name[[] SG 5-9
SET ,HOME[,(p,s)],[P.]progname SH 5-9

»ON } -
SET , INTERPRET { ,OFF S1 5-10
SET,OUTPUT[,option-1list] SOUT 5-10
SET,TRAP,type,scope[,report-level][[] ST 5-11
»ON -
SET,VETO [,OFF] sV 5-12
SKIPIF,value],relation,value) T 5-17
STEP, [n],[type], [scope] s 5-18
SUSPEND{ ,file—~name] 1 5-19
TRACEBACK [,g.entrypoint] T 5-19
,P.progname

7This command has no short form.
TTThe short form for the NULL command is an empty line (or an empty area between semicolons).

(BASIC, COBOL, and FORTRAN CID commands are shown on the inside back cover.)

60481400 C

60481400

G CONTROL DATA
CORPORATION

CYBER INTERACTIVE DEBUG
VERSION 1
'REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1

REVISION RECORD

Revision Description

A (04-28-78) Original release.

B (07-20-79) Revised to reflect CYBER Interactive Debug Version l.l1. The changes include support of
BASIC 3 and FORTRAN 5, as well as miscellaneous technical changes and corrections.

c (11-20-81) Revised to reflect CYBER Interactive Debug Version 1.2 at PSR level 552, The changes
include the addition of COBOL 5 features, the addition of the STEP command, and
reorganization of the manual, as well as miscellaneous technical changes and
corrections. This is a complete reprint.

D (06-25-84) Revised at PSR level 601, This revision includes release under NOS 2, removal of the
time limit condition, clarification of the #ERRCODE variable description, and
miscellaneous technical and editorial changes.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
C)COPYRIGHT CONTROL DATA CORPORATION P.0. BOX 3492

1978, 1979, 1981, 1984
All Rights Reserved

SUNNYVALE, CALIFORNIA 94088-3492

Printed in the United States of America or use Comment Sheet in the back of this manual

ii

60481400 D

LIST OF EFFECTIVE PAGES

S

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in. the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover

Inside Front Cover
Title Page

ii

iii/div

v

vi

vii

viii

ix/x

thru 2-3

thru 3-8

DWW WWN
R R L AL

N O WR - BRWRN RN -

thru 4-5

thru 4-9
thru 5-9
0 thru 5-12
2.1/5-12.2
3 thru 5-19
thru 6-6

LﬂU‘\-ll-\-L\J-\

thru 7-5
thru 8-17

PO NNNOUWL

thru B-3

1
1
1
1
2
3
1
1
2
1
4
5
6
7
8
9
1
1
1
1
2

MEEOQOEPE WS W

G-1

Index-1

Index-2

Index~3

Comment Sheet/Mailer
Inside Back Cover
Back Cover

(e R-A-Ee o R N R - AR Xz Ko Ke - Ao R -E-Ee e N N s N - X2 N K2 R-E- Ko Ne N -Ee N -H-No N - N -NeNoNeNo M=o N~ N- A - - =i - RN B o I} |

60481400 D ’ iii/iv

PREFACE

*

This manual describes the features of the CONTROL
DATA® CYBER Interactive Debug facility, a super-—
visory program designed to aid wusers in the
debugging of object programs (see Introductiom,
section 1).

CYBER Interactive Debug (CID) operates under the
following operating systems:

e NOS 1 for the cpc® CYBER 170 Computer Systems,
CYBER 70 Models 71, 72, 73, 74; and 6000
Computer Systems

e NOS 2 for the CDC CYBER 180 Computer Systems;
CYBER 170 Computer Systems; CYBER 70 Models 71,
72, 73, 74; and 6000 Computer Systems

e NOS/BE 1 for the CONTROL DATA CYBER 170
Computer Systems; CYBER 70 Models 71, 72, 73,
74; and 6000 Computer Systems

Although intended primarily to be ‘used inter-
actively from a remote time-sharing terminal, CID
can be used with limited features in batch mode.

This manual is written for the experienced
programmer who knows the programming language of
the compiler or assembler used to produce the
program to be debugged. It is assumed that you are
familiar with the operating system and computer
system in use and any terminal employed with CID.

This manual is organized to ease
details about CID commands and concepts:

referencing

e Section .l summarizes CID operation briefly.
e Section 2 describes methods used to access CID.

e Section 3 describes in detail concepts that
would not be appropriately described under CID
command names.

e Sections 4 through 6 describe the syntax and
functions of the CID commands.

° Section 7 describes your responses when CID
command execution is interrupted as a result of
.errors, warnings, veto mode prompts, or
terminal interrupts.

e Section 8 contains sample debug sessions under
CID.

Beginning CID users should read a user’s guide for
CID before reading this manual.

Related material is contained in the publications
listed below; the publications are listed within
groupings that indicate relative importance to
readers of this manual.

The Software Publications Release History serves as
a guide in determining which revision level of
software documentation corresponds to the Pro-
gramming Systems Report (PSR) level of installed
site software.

The following publications are of primary interest:

Publication
Publication Number
CYBER Interactive Debug Version 1
Online Reference Manual L60481400
CYBER Interactive Debug Version 1 Guide for
Users of FORTRAN Extended Version 4 60482700
CYBER Interactive Debug Version 1 Guide for
Users of FORTRAN Version 5 60484100
INTERCOM Version 5 Reference Manual 60455010
Network Products Interactive Facility
Version 1 Reference Manual 60455250
NOS/BE Version 1 Reference Manual 60493800
NOS Version 1 Reference Manual Volume 1 of 2 60435400
NOS Version 2 Reference Manual Volume 1 of 4 60459660

60481400 D , v

vi

The following publications are of secondary interest:

Publication
Publication Number
BASIC Version 3 Refere;ce Manual 19983900
COBOL Vétsion 5 Reference Manual 60497100
COBOL Version 5 Online Reference Manual L60497100
COMPASS Version 3 Reference Manual 60492600
FORTRAN Extended Version 4 Reference Manual 60497800
FORTRAN Version 5 Reference Manual 60481300
FORTRAN Version 5 Online Reference Manual . 160481300
Network Products Interactive Facility
Version 1 User’s Guide 60455260
Network Terminal User’s Instant 60455270
Software Publications Release History 60481000

CDC manuals can be ordered from Control Data Corporation,
Literature and Distribution Services, 308 North Dale Street,
St. Paul, Minnesota 55103.

This product 1s intended for use only as
described in this document. Control Data can-
not be responsible for the proper functioning
of undescribed features or parameters.

60481400 D

CONTENTS

#

NOTATIONS

1.

INTRODUCTION

Debug Session
CID Features

2.

ACCESSING CID

Debug Control Statement
Compilation of High—level Language

Programs
Compilation
Compilation
Compilation

Execution Under CID
Files Used During a Debug Session

3.

Input File

Output Files
CID Enviromnment Files
Suspend File
Scratch Files

CID CONCEPTS

Types of CID Commands
Home Program
Breakpoints

Traps
Trap Types

ABORT Trap
END Trap
FETCH Trap

of BASIC Programs
of COBOL Programs
of FORTRAN Programs

INSTRUCTION Trap

INTERRUPT Trap
JUMP Trap

LINE Trap
OVERLAY Trap
PROCEDURE Trap
RJ Trap

STORE Trap

XJ Trap

Default Traps
Trap Action

Trap Action for
Trap Action for
Trap Action for
Trap Action for

Interpret Mode

Command Sequences

Breakpoint and Trap
Groups

Line Sequences
Collect Mode

CID Sequence Execution
Command Sequence Files
Command Sequence Examples
Editing a Command Sequence

60481400 D

BASIC Programs
COBOL Programs
FORTRAN Programs
Other Programs

Bodies

xi 4. SYNTAX OF LANGUAGE-INDEPENDENT COMMANDS

Format of Language-Independent Commands

1-1 Addresses

Absolute Addresses
1 Module Relative Addresses
-1 Entry Point Addresses
Overlay Addresses
Source Language Symbol Addresses
2-1 BASIC Symbols

COBOL Symbols

2-1 FORTRAN Symbols
Address Range Specification
Module or Block Referencing

i

Ellipsis
Values

UL

NNNNNTNNNNN
WWWNNRNNDND -

P
L

Expressions

Addition and Subtraction Operators
Value Operator (!)

CLEAR Commands

LIST Commands

wwwwwww'fuwwuwwww
FPLOULWLWLWWNPONN =

]
F o

3-4 LIST,MAP Command
3-4 LIST,STATUS Command
3-4 LIST,TRAP Command
3-5 LIST,VALUES Command
3-5

3-6

3-6 SAVE Commands

3-7 SAVE, BREAKPOINT Command
3-7 SAVE,GROUP Command

3-7 SAVE, TRAP Command

3-7 SAVE,* COMMAND

3-7 SET Commands

3-7 SET,AUXILIARY Command
3-7 SET,BREAKPOINT Command
3-7 SET,GROUP Command

3-7 SET ,HOME Command

Numeric Constant Values
Decimal Integer Constants
Octal Integer Constants

Address Values

Debug Variables
Debug User Variables
Debug State Variables
Program State Variables
Interpret Mode Variables
Register State Variables

5. LANGUAGE-INDEPENDENT COMMANDS

CLEAR ,AUXILIARY Command
CLEAR ,BREAKPOINT Command
CLEAR ,GROUP Command
CLEAR,INTERPRET Command
CLEAR ,0UTPUT Command
CLEAR ,TRAP Command
CLEAR,VETO Command

LIST,BREAKPOINT Command
LIST,GROUP Command

BASIC Program Modules
3-6 COBOL Program Modules
FORTRAN Program Modules

4-1

4-1
4-1
4-1
4-1
4-2
4-2
4-3
4-3
4-3
4-3
4-4
44
4-4
4-4
44
4-4
4-5
4-5
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-8
4-8

w
[}
—

AR S O A B AR
WONNNNSNYNNOAOAVITVUVUVNWWWRNNN M

v
]
o

5-9

vii

SET,INTERPRET Command 5-10 E Batch CID Features E-1
SET,OUTPUT Command 5-11 F Usage Constraints and Dependencies F-1
SET,TRAP Command 5-11 G Debugging Hints G-1
SET,VETO Command 5-12.1/
5-12.2
Other Language-Independent Commands 5-12.1/
5-12,2 INDEX
DISPLAY Command 5-12.1/
5-12.2
ENTER Command 5-13
EXECUTE Command 5-14 FIGURES
GO Command 5-14
HELP Command 5-14 2-1 DEBUG Control Statement 2-1
JUMP Command 5-15 3-1 Trap Report Message 3-4
LABEL Command 5-15 3-2 CID Sequence Example 3-8
MESSAGE Command 5-15 3-3 Defined Group 3-8
MOVE Command 5-15 4-1 Decimal Integer Constant 4-5
NULL Command 5-16 4-2 Octal Integer Constant 4-5
PAUSE Command 5-16 4-3 Abort Information Variables 4-6
QUIT Command 5-17 4-4 Interpret Mode Variables 4-7
READ Command 5-17 5-1 CLEAR ,AUXILIARY Command 5-1
SKIPIF Command 5-17 5-2 CLEAR , BREAKPOINT Command 5-2
STEP Command 5-18 5-3 CLEAR,GROUP Command 5-2
SUSPEND Command 5-19 5-4 CLEAR,INTERPRET Command 5-2
TRACEBACK Command 5-19 5-5 CLEAR,QUTPUT Command 5-2
5-6 CLEAR,TRAP Command 5-3
5-7 CLEAR,VETO Command 5-3
6. LANGUAGE-DEPENDENT COMMANDS 6-1 5-8 LIST,BREAKPOINT Command 5-4
5-9 LIST,GROUP Command 5-4
BASIC CID Commands 6-1 5-10 LIST,MAP Command 5-5
GOTO Command 6-1 5-11 LIST,STATUS Command 5-5
IF Command 6-1 5-12 LIST,TRAP Command 5-6
LET Command 6-2 5-13 LIST,VALUES Command 5-6
MAT PRINT Command 6-2 5-14 SAVE,BREAKPOINT Command 5-7
PRINT Command 6-2 5-15 SAVE,GROUP Command 5-8
COBOL CID Commands 6-2 5-16 SAVE,TRAP Command 5-8
DISPLAY Command 6-3 5-17 SAVE,* Command 5-8
GO TO Command 6-3 5-18 SET,AUXILIARY Command 5-9
MOVE Command 6-4 5-19 SET,BREAKPOINT Command 5-10
SET. Command 6-4 5~20 SET,GROUP Command 5-10
Format 1 SET Command 6-4 5-21 SET,HOME Command 5-10
Format 2 SET Command 6-5 5-22 SET,INTERPRET Command 5-11
FORTRAN CID Commands 6-5 5-23 SET,OUTPUT Command 5-11
Assigmnment Command 6-5 5-24 SET,TRAP Command 5-12
GOTO Command 6-6 5-25 SET,VETO Command 5-12.1/
IF Command 6-6 5-12.2
PRINT Command 6—6 5-26 DISPLAY Command 5-12.1/
5-12,2
5-27 ENTER Command 5-13
7. ERROR, WARNING, VETO MODE, AND 5-28 EXECUTE Command 5-14
INTERRUPT PROCESSING 7-1 5-29 GO Command 5-14
5-30 HELP Command 5-15
Error Processing 7-1 5-31 JUMP Command 5-15
Warning Processing 7-1 5-32 LABEL Command 5-15
Veto Mode Processing 7-1 5-33 MESSAGE Command 5-15
Interrupt Processing 7-1 5-34 MOVE Command 5-16
Error, Warning, Veto Mode and 5-35 NULL Command 5-16
Interrupt Responses 7-2 5-36 PAUSE Command 5-17
Error Responses 7-2 5-37 QUIT Command 5-17
Warning Responses 7-2 5-38 READ Command 5-17
Veto Mode Responses 7-2 5-39 SKIPIF Command 5-18
Interrupt Responses 7-2 5-40 STEP Command 5-18
5-41 SUSPEND Command 5-19
5-42 TRACEBACK Command 5-19
8. SAMPLE DEBUG SESSIONS 8-1 6-1 GOTO Command 6-1
6-2 IF Command 6-1
6-3 LET Command 6-2
APPENDIXES 6-4 MAT PRINT Command 6-2
6-5 PRINT Command 6-2
A Standard Character Sets A-1 6-6 DISPLAY Command 6-3
B Diagnostics B-1 6-7 GO TO Command 6-3
C Glossary c-1 6-8 MOVE Command 6-4
P Program Structure D-1 6-9 Format 1 SET Command 6-4

viii 60481400 D

6-10 Format 2 SET Command

6~11 Assignment Command

6-12 GOTO Command

6-13 IF Command

6-14 PRINT Command

7-1 Command Sequence for Interrupt
Example

8-1 Session A Source Listing

8-2 Debug Session A

8-3 Session A Auxiliary File Listing

8-4 Session B FORTRAN Main Program and
Subroutines

8-5 Debug Session B

8-6 Session C Source Listing

8-7 Debug Session C

8-8 Session C Auxiliary File Listing

8-9 Session D; COBOL Main Program

8-10 Session D; FORTRAN Subroutine

8-11 Session D; Input Data on File SALES

8-12 Debug Session D

60481400 C

6-5
6-5
6-6
6—6
6—6

7-5
8-1
8-1
8-3

8-4
8-6
8-8
8-9
8-10
8-11
8-14
8-14
8-15

TABLES

4-1 Debug State Variables

4-2 Program State Variables

4-3 Register State Variables

5-1 CLEAR Command Variants

5-2 LIST Command Variants

5-3 SAVE Command Variants

5-4 SET Command Variants -

5-5 Trap Types

5-6 DISPLAY Formats

6-1 Allowable MOVE Command Sending
and Receiving Items

6-2 Allowed Format 1 Set Command
Operations

7-1 Response Keyword Actions

7-2 - Error Response Examples

7-3 Warning Response Examples

7-4 Veto Mode Response Examples

7-5 Interrupt Response Examples

4-5
4-5
4-8
5-1
5-4
5-7
5-8
5-12
5-13

ix/x

NOTATIONS

The following

notations appear in formats

throughout this manual:

{1

[1

60481400 D

Braces indicate that you must specify
exactly one of the enclosed verti-
cally stacked parameters or keywords.

Square brackets indicate that the
enclosed parameters or keywords are
optional. When two or more items
are stacked vertically within brac-
kets, one or none of the items can
be used. In some commands, a single
left bracket is a valid character.

The wunderscore in CID indicates a
relative address in a program module
or common block. The symbol to the

UPPERCASE

lowercase

left of the underscore specifies a

block or module name. The symbol to
the right of the underscore speci-

fies the relative address within the
block or module.

Uppercase characters indicate words,
acronyms, or mnemonics either
required by CID or produced as
output by CID.

Lowercase characters indicate words
or values that, if entered by you or
produced as output by CID, can take
on one .of several values.

Unless otherwise specified, numbers in this manual
are decimal numbers.

xi

INTRODUCTION 1

CYBER Interactive Debug (CID) Version 1 is a
facility designed to help you find errors in a
program while the program is executing. You can
use CID to debug a single program module, a set of
program modules with all required object 1library

modules, or a set of programs contained on overlays. -

CID is a supervisory program module loaded in the
field length to operate on loaded object programs.
Consequently, you can use CID to debug programs
produced by any assembler or compiler in the
product set. There are some constraints, however,
on programs that can be debugged under CID (see
appendix F).

No special statements are needed in a source
program to be debugged under CID; however, more
features are available in debugging BASIC, COBOL,
and FORTRAN programs if the programs are compiled
for use with CID. Compilation for use with CID is
described in section 2.

Although CID is designed for interactive use, CID
can be used with batch jobs. Not all of the
features available for interactive use are also
available for batch use. See appendix E for batch
job considerations.

DEBUG SESSION

A debug session is the execution of a program under
CID control. To begin a debug session, you must
load and execute the program with debug mode turned
on. (The DEBUG control statement turns on debug
mode.) Loading the program with debug mode turned
on causes the CID supervisory module to be loaded
when the relocatable object program being debugged
is loaded. When the program is executed, CID takes
control and issues the following message to
indicate that the debug session has begun:

CYBER INTERACTIVE DEBUG

CID then issues a question mark prompt to indicate
that you can enter CID commands.

During a debug session, the program being debugged
is executed until user-set conditions (and some
default conditions) cause execution to be sus-—
pended. While execution 1is suspended, you can
observe and change the values of variables, data
items, and memory locations associated with the
program being debugged. When you are done changing
and observing values, you can resume program
execution or terminate the debug session.
Execution can be suspended any number of times
during a debug session, and conditions causing
execution to be suspended can be changed any time
during the session. The debug session ends when
you enter the QUIT command.

60481400 C

CID FEATURES

CID features are listed below:

® Breakpoints

You can set breakpoints that suspend program
execution when specified places in the program
are reached. The SET,BREAKPOINT command sets
breakpoints.

® Traps

You can set traps that suspend program
execution when specified conditions occur. The
SET,TRAP command sets traps.

® High-level language features

High—-level language features are available only
for BASIC, COBOL, and FORTRAN programs compiled
for use with CID. You can enter language-—
dependent CID commands that are similar in
syntax and action to statements contained in
the source language. In other, language—
independent, CID commands, you can specify
locations in a high-level form, such as by
variable names, line numbers, COBOL procedure
names, and FORTRAN statement numbers.

The STEP command executes a specified number of
high~level language program lines or COBOL
procedures. Additional traps and additional
debug variables are also available for
high-level language programs.

® Command sequences

Sequences of CID commands can be defined as
groups, bodies, or line sequences. A group
executes when directed to by a READ command. A
body executes automatically when a particular
trap or breakpoint occurs. A line sequence is
‘a sequence of CID commands contained on one
line.

® Debug variables

Debug variables are provided by CID to give you
information such as the current field length,
the number of the current source line being
executed, and the number of traps or break-
points currently defined. The language-—
independent ENTER and DISPLAY commands are
entered to change and observe the values of
debug variables.

Suspend and resume features

When a debug session 1is taking place, the
entire session can be suspended such that
control. returns to the command mode of the
operating system. This feature is most useful
when files are to be attached or edited during
a session. When the debug session is sus—-
pended, breakpoint definitions, trap defini-
tions, group definitions, debug variables, and
the current status of the debug session are
placed on a local file. The SUSPEND command
suspends the entire debug session. The control

statement DEBUG(RESUME) causes the suspended.

debug session to be resumed.

Commands are also available to save specific
breakpoint, trap, and group definitions on a
local file. These saved definitions can then
be used in future debug sessions. The SAVE
commands place the definitions onto a local
file. The READ command reads definitions from

a local file and makes the definitions
available during a debug session.

Informative output

Informative output during a debug session
includes 1listings of information such as the
breakpoints, traps, or groups currently
defined; the values of all program variables or
data items; the current status of the debug
session; and a load map containing the names of
all program modules currently loaded. The LIST
commands provide this informationm.

Output can be directed to the standard output
file (usually the terminal) or to an auxiliary
file that you specify. The SET,OUTPUT command
specifies the types of output sent to the
standard output file, and the SET,AUXILIARY
command specifies the name of the auxiliary
output file and the types of output sent to the
auxiliary output file.

60481400 C

ACCESSING CID 2

50—

This section describes the actions necessary to
execute a program under CID. To execute a program
under CID, you must load and execute the program
with debug mode turned on. Debug tables and
CID-oriented object code must be produced during
compilation of BASIC, COBOL, and FORTRAN programs
if high-level language CID features are to be
available for the debug session.

DEBUG CONTROL STATEMENT

The DEBUG control statement (figure 2-1) turns
debug mode on or off or resumes a debug session
that was suspended and placed on a file by the
SUSPEND command. (The SUSPEND command is described
in section 5.)

JON

DEBUG ,OFF -
,RESUME [, file-namel
ON Default; turns on debug mode.
OFF Turns off debug mode.
RESUME Resumes the debug session placed on

the Local file file-name by the
SUSPEND command. Default for file-
name is ZZZZiDS.

Figure 2-1. DEBUG Control Statement

When a debug session is resumed, the CID environ—
ment, the program, and the status of the debug
session are read from the file and CID takes
control. CID issues the following message when the
debug session is resumed:

CYBER INTERACTIVE DEBUG RESUMED

CID then issues a question mark prompt to indicate
that you can enter CID commands.

COMPILATION OF HIGH-LEVEL
LANGUAGE PROGRAMS

High-level 1language features are available for
BASIC, COBOL, and FORTRAN programs if the programs
are compiled for use with CID. When these programs
are compiled for use with CID, debug tables and
CID-oriented object code are produced during
compilation. High—-level language features are not
available for programs written in languages other
than BASIC, COBOL, or FORTRAN.

60481400 C

COMPILATION OF BASIC PROGRAMS

When a BASIC program is compiled for use with CID,
the following features are made available for
debugging that program:

® BASIC CID commands (see section 6)

® Source language symbol addresses (see section 4)
e LINE trap!type (see section 3)

e #LINE debug variable (see section 4)

® LIST,VALUES command (see section 5)

® STEP command (see section 5)

A BASIC program is compiled for use with CID if the
program is compiled with debug mode turned on or if
DB=ID is specified in the BASIC control statement.
(When debug mode 1is turned on and DB=0 is
specified, the program is not compiled for use with
CID.) If debug mode is on when a BASIC program is
run using the BASIC subsystem on NOS, the program
is compiled for use with CID and the program is
executed under CID control.

The debug tables produced during compilation of
BASIC programs include symbol tables. The symbol
tables enable CID commands to reference variables

and line numbers from the BASIC source program.
The debug tables also indicate that the program is

written in BASIC so that CID can provide the
language~dependent BASIC CID commands. The
CID-oriented object code identifies the beginning
of each BASIC source program line to make the LINE
trap type and the STEP command available.

COMPILATION OF COBOL PROGRAMS

When a COBOL program is compiled for use with CID,
the following features are made available for
debugging that program:

® COBOL CID commands (see section 6)

® Source language symbol addresses (see section 4)
® LINE and PROCEDURE trap types (see section 3)

[) #LINE and #PROC debug variables (see section 4)

® LIST,VALUES command (see section 5)

® STEP command (see section 5)

A COBOL program is compiled for use with CID if the
program is compiled with debug mode turned on or if
DB=ID is specified in the COBOL5 control state-
ment. (When debug mode is on and DB=0 is speci-
fied, the program is not compiled for use with CID.)

The debug tables produced during compilation of
COBOL programs include symbol tables. The symbol
tables enable CID commands to reference data names,
line numbers, and procedure names from the COBOL
source program. The debug tables also indicate
that the program is written in COBOL so that CID
can provide the language-dependent COBOL CID
commands. The CID-oriented object code identifies
the beginning of COBOL source lines and the be-
ginning of COBOL procedures, making the LINE and
PROCEDURE trap types and the STEP command available.

COMPILATION OF FORTRAN PROGRAMS

When a FORTRAN program is compiled for use with
CID, the following features are made available for
debugging that program:

® FORTRAN CID commands (see section 6)

® Source language symbol addresses (see section 4)
® LINE trap type (see section 3)

e {#LINE debug variable (see section 4)

® LIST,VALUES command (see section 5)

® STEP command (see section 5)

A FORTRAN program is compiled for use with CID if
the program is compiled with debug mode turned on
or if the proper option is specified in the FORTRAN
compiler call:

® For FORTRAN 5 programs, the DB=ID option in the
FIN5 control statement causes the program to be
compiled for use with CID. (When debug mode is
on and either DB=-ID or DB=0 is specified, the
program 1is not compiled for use with CID.)
FORTRAN 5 programs cannot be compiled for use
with CID when compiler optimization 1levels
other than OPT=0 are selected. If debug mode
is on when a FORTRAN 5 program is run inter-
actively on the FORTRAN subsystem on NOS, the
program is compiled for use with CID and the
program is executed under CID control.

® For FORTRAN Extended 4 programs, the DB option
or the DB=ID option in the FTIN control state-
ment causes the program to be compiled for use
with CID. (When debug mode is turned on and
DB=0 is specified, the program is not compiled
for use with CID.)

When a FORTRAN Extem{ed 4 program is compiled
for use with CID, the TS compiler option is
selected automatically; the program cannot be
compiled for wuse with CID when optimizing
compiler options are selected. If debug mode
is on when a FORTRAN program is run inter-
actively on the FINTS subsystem on NOS, the
program is compiled for use with CID and the
program is executed under CID control.

The debug tables produced during compilation of
FORTRAN programs include symbol tables. The symbol
tables enable CID commands to reference variables,
line numbers, and statement labels from the FORTRAN
source program. The CID-oriented object code
identifies the beginning of each FORTRAN source
line to make the LINE trap type and the STEP
command available.

52-2

EXECUTION UNDER CID

Programs compiled for use with CID can be executed
with debug mode turned on or off. When a program
or set of programs is loaded and executed with
debug mode on, the CID supervisory module is loaded
automatically with the relocatable object programs
being debugged. Execution begins at a location in
the CID module; CID issues the following message to
indicate that the debug session has begun:

CYBER INTERACTIVE DEBUG

CID then issues a question mark prompt to indicate
that you can enter CID commands. Execution of the
program being debugged does not begin until you
enter a CID command to begin execution (such as the
GO, EXECUTE, or STEP commands). To terminate or
suspend a debug session, you can enter the QUIT or
SUSPEND commands, respectively.

When a program is loaded and executed with debug
mode turned off, the program is not executed under
CID control. When a BASIC, COBOL, or FORTRAN
program with debug tables and CID-oriented object
code is executed without CID control, execution is
slightly less efficient than with a program
compiled normally; otherwise, execution is the same
as with normally compiled programs.

'FILES USED DURING A

DEBUG SESSION

The following types of files are used during a
debug session:

® Input file

® Output files

® CID environment files
® Suspend file

® Scratch files

INPUT FILE

The file used for input during a debug session
differs depending on whether the session is
executed in interactive or batch mode:

® For interactive debug sessions, input is taken
from the file ZZZZZIN. ZZZZZIN 1is automat-—
ically assigned (NOS) or connected (NOS/BE) to
the terminal.

® For batch debug sessions, input is taken from
the local file DBUGIN (see appendix E).

The input file contains unblocked, zero-byte
terminated records.

OUTPUT FILES

You can direct CID output to either the standard
output file (determined by CID) or to an auxiliary
output file (that you specify). These files
contain unblocked, =zero-byte terminated records.
The output can be directed such that some types of
output are sent to the standard output file and
other types are sent to the auxiliary file.

60481400 C

The standard output file differs depending on
whether the session is executed in interactive or
batch mode:

'@ For interactive debug sessions, the standard
output file is 2ZZZZ0OU. 2ZZZZZ0U is automat-
ically assigned (NOS) or connected (NOS/BE) to
the terminal. :

® For batch debug sessions, the standard output
file is DBUGOUT (see appendix E).

The types of output sent to the standard output

file are specified in the SET,OUTPUT command (see.

section 5). You can respecify these types any
number of times during the debug session.

The types of output sent to the auxiliary output
file and the name of the auxiliary output file are
specified using the SET,AUXILIARY command (see
section 5). You can respecify these types any
number of times during the debut session. The
auxiliary file name can also be changed during the
debug session; however, only one auxiliary output
file is in effect at any given time. The auxiliary
output file is a local file.

CID ENVIRONMENT FILES

CID environment files are local files on which
trap, breakpoint, and group definitins are saved
(as the result of a SAVE command described in
section 5). Names of CID environment files are
specified when the SAVE command is entered. The
files contain zero-byte terminated records; one
logical record is written to a file each time a
SAVE command specifying that file is executed.

60481400 C

SUSPEND FILE

When a debug session is suspended (by the SUSPEND
comnand described in section 5), the current status
of the debug session is saved on a local file
specified in the SUSPEND command (the default file
name 1is 2ZZZZDS). The suspend file contains
multiple binary records and is returned whenever
the DEBUG(RESUME) control statement is executed.

SCRATCH FILES

CID uses the following scratch files during a debug
session:

+

® Z27ZZZD1
e ZZZZZD0
® ZZZZ7ZDT
® 2ZZ2Z2ZU1

When you use CID to debug a program, you should not
have any local files with these names.

It is unlikely that you would find any of these
files, except for ZZZZZDT, useful. Debug tables
are stored on ZZZZZDT when a BASIC, COBOL, or
FORTRAN program is compiled for use with CID. In
some cases, it 1is wuseful to make this file
permanent (see appendix F). 2ZZZZZDT is a binary
file that contains multiple logical records.

2-3

CID CONCEPTS 3

This section describes miscellaneous concepts that
cannot be appropriately covered under individual
comnand names. The following concepts are
described in this section:

® Types of CID comﬁlands
® Home program

® Breakpoints

® Traps

® Command Sequences

TYPES OF CID COMMANDS

You can enter the following types of CID commands
whenever CID issues a question mark prompt:

® Language-independent commands (see sections 4
and 5) all have similar formats and do not vary
in form and usage between different programming
languages.

® Language—dependent commands (see section 6) are
nearly identical in form and action to
statements used in the programming language of
the program being debugged. Language-dependent
commands are only available for BASIC, COBOL,
and FORTRAN programs compiled for use with CID.

HOME PROGRAM

The home program is the program on which you are
currently working. In language-independent com—
mands, you can reference locations within the home
program more easily than locations outside the home
program (see section 4). In language—dependent
commands, you can only reference locations within
the home program (see section 6).

Whenever CID suspends program execution, the
program that was suspended is designated the home
program. You can explicitly designate a new home
program by entering the SET,HOME command (see
section 5).

BREAKPOINTS

A breakpoint is a program location where program
execution is to be suspended. Whenever a
breakpoint location in a program is reached, you
can observe and change program values at the point
where program execution is suspended.

The SET,BREAKPOINT command sets a breakpoint, the
CLEAR ,BREAKPOINT command removes one or more
breakpoints, the LIST,BREAKPOINT command lists one
or more breakpoints, and the SAVE,BREAKPOINT
command saves one or more breakpoints on a local
file. See section 5 for descriptions of these
commands .

60481400 C

CID assigns each breakpoint a number in the range 1
through 16 when the breakpoint is set. This
breakpoint number, referred to in the form #n,
provides a convenient way of referring to
breakpoints in CID commands. The breakpoint number
is also used in the breakpoint report message.

Program execution 1is suspended whenever execution
reaches the breakpoint location and the frequency
parameters (specified in the SET, BREAKPOINT
command) are met. Execution is suspended before
the instructions in the breakpoint location are
executed.

If a breakpoint body (see Command Sequences later
in this section) is not associated with the break-
point, a breakpoint report message is automatically
issued, and CID issues a question mark prompt to
indicate that you can enter CID commands. The form
of the breakpoint message is:

*B #n, AT location

The n is the breakpoint number and location is
reported as the breakpoint location specified in
the SET,BREAKPOINT command.

If a breakpoint body (see command sequences later
in this section) is associated with the breakpoint,
the CID commands in the breakpoint body are
executed automatically, and you do not gain control

unless a PAUSE command is executed in the break-
point body. (Breakpoint bodies are described later

in this section.) If you do not gain control, no
breakpoint message is issued.

CID places return jump (RJ) machine instructions
into breakpoint locations when breakpoints are set,
so that a breakpoint-handling routine is executed
when program execution reaches a breakpoint
location. The modifications made by CID at a
breakpoint location are mnot displayed by the
DISPLAY command; that is, an attempt to display the
contents of a breakpoint location causes the
previous contents of the location to be displayed.
Modification of the contents of the breakpoint
location by your program destroys the breakpoint
detection mechanism. However, since the location
is still known to be a breakpoint by CID, the
modifications are not displayed.

If a breakpoint location contains an RJ
instruction, breakpoint detection occurs after any
prior instructions in the word have been executed
except for the first time detection (but not
necessarily action) occurs.

Whether or not the location contains an RJ
instruction, all parts of the breakpoint word that
could be used to supply information to a called
routine are valid.

You should be careful when you set a breakpoint at
an entry point that is the target of an RJ
instruction, because the breakpoint is destroyed
when the exit jump is stored by the RJ instruc-

tion. Such a breakpoint is useful only if the
subroutine has already been entered and detection
of subroutine exit is desired. You should clear
the breakpoint before returning from the
subroutine. (Another way to detect a subroutine
exit is to set an RJ trap described later in this
sections The RJ trap can be set while either
inside or outside the subroutine.) A warning
message 1s issued when a breakpoint is set at a
location that is an entry point but not explicitly
designated as such in the location parameter of the
SET ,BREAKPOINT command.

Displaying the debug variable #P (see section 4) on
an INSTRUCTION, RJ, XJ, JUMP, STORE, or FETCH trap
at a breakpoint location appears no differently
than when no breakpoint is set there.

The return jump to the breakpoint entry is not
trapped by any RJ trap or INSTRUCTION trap. CID
makes breakpoints invisible in this respect as well.

TRAPS

A trap automatically suspends program execution
when a special condition occurs. You can then
observe and change program values at the point
where program execution was suspended.

The setting of a trap allows for a specific
condition to be monitored over a specified program
region without disturbing the logic of the program
being executed. With one exception, the conditions
monitored are under the control of the program
being debugged. The single exception is that the
INTERRUPT trap allows a program to be stopped any
time you issue an interrupt signal from the
terminal.

The SET,TRAP command sets a trap, the CLEAR,TRAP
command removes one or more traps, the LIST,TRAP
command lists one or more traps at the terminal,
and the SAVE,TRAP command saves one or more traps
on a local file. These commands are described in
section 5.

The SET,TRAP command (described in section 5) has
these parameters: type, scope, and report-level.
The type parameter specifies what condition causes
the trap to occur, the scope parameter specifies
what locations are to be monitored for the trap
condition, and the report-level parameter specifies
what kind of address CID displays when the trap
occurs.

When a trap is set, the trap is assigned a number
in the range 1 through 16. This trap number,
referred to in the form #n, provides a convenient
way of referring to traps in CID commands. The
trap number is also used in the trap report message
that CID issues when a trap occurs. A trap remains
established for the remainder of the dehug session,
unless the trap is redefined by another SET,TRAP
command or cleared by a CLEAR,TRAP command = (see
section 5).

TRAP TYPES

The following paragraphs describe the types of
traps available with CID.

3-2

ABORT Trap

The ABORT trap occurs after abnormal program
termination (for example, termination as a result
of an execution-time error). The scope of an ABORT
trap 1is an execution address range. A default
ABORT trap with unrestricted scope exists before
you set an ABORT trap. If you set an ABORT trap,
the default ABORT trap remains in effect at all
locations not in the scope of the ABORT trap that
you set.

If your program is executing when a time limit
occurs, control goes to CID and an ABORT trap is
issued with a message:

*CP TIME LIMIT

If CID is executing when a time limit occurs, the
message issued is:

*TIME LIMIT

With the TIME LIMIT message, you are asked to enter
T to continue or CR to stop. If CR is entered, CID
gains control, because of the time 1limit, and
terminates the session. If T, or T,n is entered,
NOS extends the time; CID is wunaffected and
continues executing.

A reprieve mechanism is used to implement the ABORT
trap. CID uses the system routine RPV to gain
control on abnormal termination.

You can designate reprieve routines to receive
control on abnormal termination in FORTRAN, BASIC,
and COMPASS programs. FORTRAN programs can
designate reprieve routines by calling the
subroutine RECOVR at the start of program execution
with appropriate parameters (see the FORTRAN
reference manual). BASIC programs can designate
reprieve routines by executing the ON ERROR
statement (see the BASIC reference manual).
COMPASS programs can designate reprieve routines by
calling the RECOVR macro. COBOL programs do not
generally designate reprieve routines; when a
phrase such as the ON OVERFLOW phrase is used in a
COBOL program, the condition specified by the
phrase does not cause an ABORT trap.

In programs that contain reprieve code, CID
receives control on an ABORT trap before the
reprieve code is executed. If no reprieve code is
present, the EXECUTE (or GO) command with no
location specified is not allowed after an ABORT
trap. If there is reprieve code for abnormal
termination the EXECUTE (or GO) command begins
execution of the reprieve code. Upon the
completion of the reprieve code, CID again receives
control and reports that the reprieve code has been
completed. On an ABORT trap, the debug variables
#ERRCODE and #CPUERR contain values indicative of
the reason for the abort (see section 4).

END Trap

The END trap occurs after normal program
termination (that is, when program execution ends,
not as the result of an error). The scope of an
END trap is an execution address range. A default
END trap with unrestricted scope exists before you
set an END trap. If you set an END trap, the
default END trap remains in effect at all locations
not in the scope of the END trap that you set.

60481400 D

A reprieve mechanism is used to implement the END
trap. CID uses the system routine RPV to gain
control on normal termination.

You can designate reprieve routines to receive
control on normal termination in FORTRAN programs
by calling the subroutine RECOVR at the start of
program execution with appropriate parameters (see
the FORTRAN reference manual). BASIC and COBOL
programs do not generally have reprieve code for
normal termination.

In programs that contain reprieve code, CID
receives control on an END trap prior to the

execution of any reprieve code. If no reprieve.

code is present, the EXECUTE (or GO) command with
no location specified is not allowed after an END
trap. If there is reprieve code for normal termi-
nation, the EXECUTE command begins execution of the
reprieve code. Upon the completion of the reprieve
code, CID again receives control and reports that
the reprieve code has been completed.

FETCH Trap

The FETCH trap occurs after data is fetched from a
location within the trap scope. The scope of a
FETCH trap is an address range. Note that the
smallest possible scope for a FETCH trap is one
memory word; if a data item or variable is
specified as the scope of a FETCH trap, the FETCH
trap can occur as the result of a fetch of a data
item or variable that shares a word with the data
item or variable specified as the scope. This
situation occurs often with COBOL data items. The
FETCH crap turns on interpret mode (described later
in this section).

INSTRUCTION Trap

The INSTRUCTION trap occurs before each machine
instruction in the trap scope 1is executed. The
trap scope 1s an execution address range. The
INSTRUCTION trap turns on interpret mode (described
later in this sectiomn).

INTERRUPT Trap

The INTERRUPT trap occurs after you 1issue a
terminal interrupt (see glossary, appendix C)

l during program execution. The scope of an
INTERRUPT trap is an execution address range. A
default INTERRUPT trap with wunrestricted scope
exists before you set an an INTERRUPT trap. If you
set an INTERRUPT trap, the default INTERRUPT trap
remains in effect at all locations not in the scope
of the user—set INTERRUPT trap.

INTERRUPT trap action differs depending on whether
one of the loaded programs is a BASIC, COBOL, or
FORTRAN program compiled for use with CID. If none
of the loaded programs is compiled for use with
CID, execution 1is suspended after the currently
executing machine instruction is complete.

If at least one of the loaded programs is a BASIC,
COBOL, or FORTRAN program compiled for use with
CID, the following considerations apply when you
enter a single interrupt during program execution.

e If the executing program is not accepting
terminal input, execution is suspended at the
beginning of the next noncontinued, executable
line in a program compiled for use with CID.

60481400 D

‘e If the executing program iIs accepting terminal

input, the INTERRUPT trap occurs immediately,
before the input line is read. If execution is
resumed at the point of the interrupt, the
entire input line must be reentered.

e If interrupt reprieve code has been specified
(through execution of a BASIC ON ATTENTION
statement or a call to the RECOVR routine), the
reprieve code is executed when a GO or EXECUTE
command with no location is entered.

e If the executing program is sending output to
the terminal, the output in the output buffer
is lost. More output might remain to be sent
to the buffer; execution is not suspended until
the statement causing the output has finished
execution.

If you enter a second interrupt when one of the
loaded programs 1is compiled for wuse with CID,
execution 1is suspended immediately after the
current machine instruction. Entering -a second
interrupt is useful in the following situatioms:

e The executing program is not compiled for use
with CID and is executing an infinite loop.
Control in this case would never return to a
program that can be interrupted with a single
interrupt.

e The executing program is sending a large
quantity of output to the terminal, and you
wish to ignore the remaining output. The
second interrupt causes suspension before the
statement causing the output is complete. If
you specify the next 1line when you resume
execution, you do not receive the remaining
output.

You can also interrupt execution of = command
sequences, but this type of interrupt is not a
trap. (See section 7.)

JUMP Trap

The JUMP trap suspends program execution before a
machine-level jump instruction is executed if the
jump is to take place. The scope of a JUMP trap is
an execution address range. The JUMP trap turns on
interpret mode (described later in this section).

LINE Trap

The LINE trap suspends program execution before
each BASIC, COBOL, or FORTRAN source 1line is
executed. The LINE trap type is available only for
BASIC, COBOL, and FORTRAN programs compiled for use
with CID. The scope of a LINE trap is an execution
address range. The LINE trap occurs only at the
beginning of 1lines that are not continued from
previous lines. In FORTRAN and BASIC programs, the
LINE trap only occurs at the beginning of 1lines
containing executable statements. In COBOL

programs, the LINE trap also occurs at procedure—
name lines.

OVERLAY Trap

The OVERLAY trap suspends program execution after a
specified FORTRAN overlay is loaded. The scope of
an OVERLAY trap is a pair of octal overlay level
designators of the form (p,s) or an asterisk to
indicate all overlays.

3-3

When executing under CID control, the FORTRAN
library routine OVERLAY gives control to CID when
called. CID then checks if the overlay just loaded
is one that should be trapped.

PROCEDURE Trap

The PROCEDURE trap suspends program execution when
execution reaches the beginning of a COBOL
paragraph or section in the procedure division.
The PROCEDURE trap type is available only for COBOL
programs compiled for use with CID. The scope of a
PROCEDURE trap is an execution address range.

When a COBOL program is compiled for use with CID,
executable code identifying the beginning of each
paragraph and section in the procedure division is
produced. The PROCEDURE trap occurs after this
code has been executed.

RJ Trap

The RJ trap suspends program execution before a
machine-level return jump (RJ) instruction is
executed or an EQ 0,0 instruction in parcel O is
executed. (The RJ instruction is used to call a
subroutine; the EQ 0,0 is usually used to return
from a subroutine.) The scope of an RJ trap is an
execution address range. The RJ trap turns on
interpret mode (described later in this section).

STORE Trap

The STORE trap suspends program execution after
data 1is stored into a location within the trap
scope. The scope of a STORE trap is an address
range. Note that the smallest possible scope for a
STORE trap is one memory word; if a data item or
variable is specified as the scope of a STORE trap,
the STORE trap can occur as the result of a store
to a data item or variable that shares a word with
the data item or variable specified as the scope.
This situation occurs often with COBOL data items.
The STORE trap turns on interpret mode (described
later in this section).

XJ Trap

The XJ trap suspends program execution before a
machine-level exchange jump (XJ) instruction is
executed. (The RJ instruction is used to call a
subroutine; the EQ 0,0 is usually used to return
from a subroutine.) The scope of an XJ trap is an
execution address range. The XJ trap turns on
interpret mode (described later in this sectiom).

DEFAULT TRAPS

For the trap types END, ABORT, and INTERRUPT,
default traps always exist. The scope of a
default trap is the balance of the address range
not contained in the scope of any traps of the same
type set by you. This means that in the absence of
any END, ABORT, or INTERRUPT trap set by you, the
corresponding default trap has unrestricted scope.
If you set a trap of one of these types, and supply
an asterisk (*) as the scope parameter, then the
corresponding default trap no longer has any scope
at all; that is, the default trap never occurs.

34

The default traps have report level L if at least
one BASIC, COBOL, or FORTRAN program compiled for
use with CID is loaded; otherwise, the report level
is P.

TRAP ACTION

When the condition specified in an established trap
is encountered in an executing program, program
execution is suspended, and the suspended program
is designated the home program. If a trap body
(described later in this section) is not associated
with the trap, CID issues a trap report message and
a question mark prompt to indicate that you can
enter CID commands. The trap report message is
shown in figure 3-1. If a trap body is associated
with the trap, the CID commands in the trap body
are executed automatically, and you do mnot gain
control, unless a PAUSE command is executed in the
trap body. If you do not gain control, no trap
message is issued. ‘

*T #n, type trap-message xx location

n Trap number.

type Trap type in the form as speci-
fied in the SET,TRAP command
(either keyword or abbreviation).

trap-message One of the following:
Trap Type Trap Message

STORE or FETCH Memory location

ABORT Reason for abort
OVERLAY Number of over-
Llay loaded
other Null
XX Either AT or IN (see text).

Identifies where the trap oc-
curred; that is, where execution
stopped. For message level P,
Llocation is reported as:
L(p,s)Jlprogname]_nnnnnB.

Location

The progname is omitted when the
home program name remains un—
changed since the last time CID
had control.

The overlay numbers (p,s) are
supplied only if progname is sup-
plied and the overlay is dif-
ferent from when CID last had
control.

The underscore always appears in
this message even when the pro-
gram name is absent. This spe-
cifies that the location is
relative to the home program
rather than to RA.

Figure 3-1. Trap Report Message

60481400 C

Details about trap action vary depending on the
scope and location parameters entered in the
SET,TRAP command when the trap is set. These
details involve the home program designation and
the trap message format.

Trap Action for BASIC Programs

This subsection describes details about trap action
when the scope parameter in the SET,TRAP command
specifies locations in a BASIC program compiled for
use with CID. The trap condition causing execution
of a BASIC program to be suspended can occur in the
BASIC program itself or in a system routine called
by the program (for example, a routine called as
the result of a PRINT statement in the BASIC
program). Designation of the home program and the
trap message format depend on the report level
parameter specified in the SET,TRAP command when
the trap is set.

The report level parameter in the SET,TRAP command
can specify one of three values:

® L (line number)
® S (statement number)
® P (program offset)

For BASIC programs compiled for use with CID, the
default report level is L.

If the L report level is specified in the SET,TRAP
command, the trap location is reported in the
following form providing the home program has not
changed:

L.nnn

If the home program has changed as a result of the
trap, the trap location 1is reported in the
following form:

P.prog_L.nnn.

The keyword AT in the trap message indicates that
the next instruction to be executed 1is at the
beginning of the BASIC source line named in the
trap message. The keyword IN indicates that the
next instruction is inside the BASIC source line.
The BASIC program is designated the home program.

If the S report level is specified in the SET,TRAP
command, the trap location is reported as follows:

L.nnn (S.nnn)

or P.prog_L.nnn (S.nmn), if the home program has
changed as a result of the trap. The line number
is reported in both L.nnn and S.nnn format.

If the P report level is specified in the SET,TRAP
command, the location where the trap condition
occurred is reported as a module relative address
(P.prog nn), and the program in which the trap
condition occurred is made the home program. The
keyword AT in the trap message indicates that the
next instruction to be executed is at the beginning
of a word. The keyword IN indicates that the next
instruction to be executed is not at the beginning
of the word.

60481400 C

If the L or S report level is in effect, the BASIC
program is designated the home program, even though
the debug variable #P (described in section 4) is
in some other program. The trap report indicates
that the trap occurred in a BASIC statement..

Trap Action for COBOL Programs

This subsection describes details about trap action
when the scope parameter in the SET,TRAP command
specifies locations in a COBOL program compiled for
use with CID. The trap condition causing execution
of a COBOL program to be suspended can occur in the
COBOL program itself or in a system routine called
by the program (for example, a routine called as
the result of a READ statement in the COBOL
program). Designation of the home program and the
trap message format depend on the report level
parameter specified in the SET,TRAP command when
the trap is set.

The report level parameter of the SET,TRAP command
can have one of three values:

® L (line number)
® PR (procedure name)

® P (program offset)

For COBOL programs compiled for use with CID, the
default report level is L.

If the L report level is specified in the SET,TRAP
command, the trap location is reported in the
following form.providing the home program has not
changed :

L.nnn

If the home program has changed as a result of the
trap, the trap location is reported as follows:

P.prog L.nnn

The keyword AT in the trap message indicates that
the next instruction to be executed is at the
beginning of the COBOL source line named in the
trap message. The keyword IN indicates that the
next instruction is inside the 1line or 1lines
associated with the 1line number. (The 1lines
associated with a line number begin with the
numbered line and end with the first line where a
COBOL statement is not continued.)

If the PR report level is specified in the SET,TRAP
command, the trap location is reported in one of
the following forms providing the home program has
not changed:

e L.nnn (PR.procedure-name)

® L.nnn (m BEFORE PR.procedure-name)

e L.nonn (m AFTER PR.procedure-name)

The m is the number of executable and procedure-

name lines before or after the beginning of the
named paragraph or section.

3-5

If the home program has changed as a result of the
trap, the trap location is reported in omne of the
following forms:

® P.prog L.nmn (PR.procedure-nanme)

® P.prog L.nmn (m BEFORE PR. procedure-name)

® P.prog L.nnn (m AFTER PR.procedure-name)

If the P report level is specified in the SET,TRAP

command, the location where the trap condition
occurred is reported as a module relative address

(P.prog nn), and the program in which the trap.

condition occurred is made the home program.

If the L or PR report level is in effect, the COBOL
program is made the home program, even if the debug
variable #P (described in section 4) contains an
address in some other program. The trap report
indicates that the trap occurred in the COBOL
program.

Trap Action for FORTRAN Programs

This subsection describes details about trap action
when the scope parameter in the SET,TRAP command
specifies locations in a FORTRAN program compiled

for use with CID. The trap condition causing

execution of a FORTRAN program to be suspended can
occur in the FORTRAN program itself or in a system
routine called by the program (for example, a
routine called as a result of a READ statement in
the FORTRAN program). Designation of the home
program and the trap message format depends on the
report level parameter specified in the SET,TRAP
command when the trap is set.

The report level parameter in the SET,TRAP command
can specify one of the following values:

e L (line number)
® S (statement number)
® P (program offset)

For FORTRAN programs compiled for use with CID, the
default report level is L.

If the L report level is specified in the SET,TRAP
command, the trap location is reported in the
following form providing the home program has not
changed:

L.non

If the home program has changed as a result of the
trap, the trap location is reported as follows:

P.prog L.nnn.

The keyword AT in the trap message indicates that
the next instruction to be executed 1is at the
beginning of the FORTRAN source line named in the
trap message. The keyword IN indicates that the
next instruction is inside the 1l1line or lines
associated with the 1line number. (The 1lines
associated with a 1line number begin with the
numbered line and end with the first line where a
FORTRAN statement is not continued.) The FORTRAN
program is made the home program.

3-6

If the S report level is specified in the SET,TRAP

command, the trap location is reported in one of
the following forms providing the home program has
not changed:

® L.nnn (S.kk)
® L.nnn (m BEFORE S.kk)

® L.nonn (m AFTER S.kk)

The m is the number of executable lines before or
after the referenced statement label. The nearest
labeled statement is referenced. 1f the home
program has changed as a result of the trap, the
program name is also reported in the trap message.

If the P report level is specified in the SET,TRAP
command, the location where the trap condition
occurred is reported as a module relative address
(P.prog nn), and that program is made the home
program.

If the L or S report levels are in effect, the
FORTRAN program is designated the home program,
even if the debug variable #P (described in section
4) is in some other program. The trap report
indicates that the trap occurred in a FORTRAN
statement.

Trap Action for Other Programs

This subsection describes details about trap action
for programs other than BASIC, COBOL, and FORTRAN
programs compiled for use with CID. The report
level for traps in this kind of program must be P

(P is selected by default when no report level is
specified in the SET,TRAP command).

In the trap report message, the location where the
trap condition occurred is reported as a module
relative address (P.prog_nn), and the program in
which the trap occurred is made the home program.
The keyword AT in the trap message indicates that
the next instruction to be executed is at the
beginning of a word. The keyword IN indicates that
the next instruction to be executed is not at the
beginning of the word.

INTERPRET MODE

Interpret mode of program execution 1is the
mechanism used to detect the occurrence of an
INSTRUCTION, RJ, XJ, JUMP, FETCH, or STORE trap.
In interpret mode, each machine instruction is
simulated by an interpreter routine. The contents
of all registers are also simulated by the
interpreter. Execution in interpret mode takes as
much as several hundred times longer than normal
execution. Interpret mode is turned on when the
first trap of one of these types is established and
remains on until all such trap types have been
removed with a CLEAR,TRAP command or wuntil
interpret mode has been explicitly turnmed off by a
SET, INTERPRET ,OFF or CLEAR, INTERPRET command .
These commands are described in section 5.
SET, INTERPRET ,OFF deactivates traps but does not
remove them.

60481400 C

COMMAND SEQUENCES

A command sequence is a sequence of commands that
are grouped and executed together. Command
sequences can be classified as breakpoint or trap
bodies, groups, or line sequences.

BREAKPOINT AND TRAP BODIES

Often, whenever a particular breakpoint or trap
condition occurs, you wish to have the same set of
CID commands executed. To avoid repeatedly

entering the same commands each time the condition.

occurs, the SET,BREAKPOINT or SET,TRAP commands
provide for declaring a body (or sequence) of CID
commands to be automatically executed when the trap
or breakpoint occurs.

In this case, you are not notified when the trap or
breakpoint occurs; you do not gain control at any
time during the program interruption unless a PAUSE
command is encountered during execution of the CID
command sequence. Program execution continues
after the last command in the command sequence is
executed or after a command that explicitly resumes
program execution is executed.

GROUPS

A certain command sequence may be so useful that it
is required as part of several command sequences in
various breakpoint or trap declarations. You may
also need to execute a group of commands several
times when in interactive mode. A command sequence
called a group provides this capability. The
SET,GROUP command can be entered to create a
group. The READ command executes the CID commands
contained in a group (see section 5).

‘LINE SEQUENCES

A line sequence is a sequence of commands all on
one line. The commands must be separated by
semicolons.

Special responses are available if an error,
warning, or interrupt occurs while processing a
line sequence. These responses are described in
section 7.

COLLECT MODE

Collect mode is a mode in which you create trap
bodies, breakpoint bodies, and groups. You can
activate collect mode when you- enter the
SET ,BREAKPOINT, SET,TRAP, or SET,GROUP command. In
the SET,BREAKPOINT and SET,TRAP commands, you
activate collect mode by specifying a left bracket
([) in the command line (see section 5). In the
SET,GROUP command, collect mode is activated
whether or not the left bracket is specified. When
collect mode is activated, CID issues the message
IN COLLECT MODE.

In collect mode, issued commands are not processed

but are syntax checked. All commands that are free
of syntax errors are collected and stored on a

60481400 C

special file, one command per 1line, even if
originally input with more than one command per
line. Once activated, collect mode remains in
effect until a right bracket (]) is encountered at
the first level of collect mode. When the right
bracket is encountered, CID issues the message END
COLLECT.

Increasing levels of collect mode are defined for
each additional command that establishes a trap or
breakpoint with ‘a2 body or a group. In this case,
collect mode remains in effect until enough right
brackets are encountered to balance the left
brackets. (The 1left brackets are implicit in a
SET ,GROUP command.)

CID SEQUENCE EXECUTION

Once a CID command sequence has begun executing,
execution of the sequence continues automatically
through the sequence until the end of the sequence
is reached, or until a GO, EXECUTE, or QUIT command
is encountered.

The command sequence can be suspended by a PAUSE,
SUSPEND, or READ command (see section 5), or by a
terminal interrupt (see section 7). Command
sequences can be nested to 16 levels.

COMMAND SEQUENCE FILES

It is possible to prepare a sequence of CID
commands on a file formatted exactly as you would
enter them from the terminal. This could be done
using some text file wutility such as a text
editor. Such a file, when attached to the job, is
executed by a READ command. With a file prepared

in this manner, any multiple command lines are
maintained as such., Thus, LABEL commands can only

appear as the first command on a line.

COMMAND SEQUENCE EXAMPLES

The example in figure 3-2 shows an RJ trap with a
body sequence. In the example, subroutine calls
are distinguished from subroutine exits by exam—
ining the operation code. The first two levels of
subroutine calls are reported when they occur. The
entry points of additional calls are stored in the
debug user variables #V1 through #V9 (debug user
variables are described in section 4). If calls
are nested more than 11 deep, a message and pause
results. When an exit 1s encountered, the call
level is reduced by one.

The example in figure 3-3 is a defined group
designed for use with the trap in figure 3-2.
Whenever the CID command READ,TRACEIT is issued, a
traceback of up to nine levels is displayed. This
traceback scheme prevents ambiguity arising from
multiple entry points in a module.

'EDITING A COMMAND SEQUENCE

If you discover that a change 1is needed in a
lengthy command sequence, you can reenter the
entire definition, while still under CID coatrol.

SET,TRAP,RJ,* [
SKIPIF,#0P,EQ,1; JUMP,SUBEXIT

ENTER,#V10+1,#V10
SKIPIF,#V10,6T,2 ; JUMP,DISP
LABEL ,STORE
SKIPIF,#V10,LE,11; JUMP,NOROOM
SKIPIF,#V10,NE,3 ; JUMP,1
SKIPIF,#V10,NE,4 ; JUMP,2
SKIPIF,#V10,NE,5 ; JUMP,3
SKIPIF,#V10,NE,6 ; JUMP,4
SKIPIF,#V10,NE,7 ; JUMP,S
SKIPIF,#V10,NE,8 ; JUMP,6
SKIPIF,#V10,NE,9 ; JUMP,7

SKIPIF,#V10,NE,10; JUMP,8
SKIPIF,#V10,NE,11; JUMP,9
LABEL,1; ENTER,#EA,#V1; GO
LABEL,2; ENTER,#EA,#V2; GO
LABEL,3; ENTER,#EA,#V3; GO
LABEL,4; ENTER,#EA,#V4; GO
LABEL,S5; ENTER,#EA,#V5; GO
LABEL,6; ENTER,#EA,#V6; GO
LABEL,7; ENTER,#EA,#V7; GO
LABEL,8; ENTER,#EA,#V8; GO
LABEL,9; ENTER,#EA,#V9; GO
LABEL ,NOROOM

MESSAGE, " TRACEBACK OVERFLOW
PAUSE

60

LABEL ,SUBEXIT
SKIPIF,#V10,LT,1
ENTER,#V10-1,4#V10

6o -

LABEL,DISP

MESSAGE, "S/R CALL AT "
DISPLAY,HEA,A

1 .

SET,GROUP,TRACEIT

MESSAGE, " STORED
SKIPIF,11,6T,#V10;
SKIPIF,10,6T,#V10;

TRACEBACK BEGINS
DISPLAY,#V9,A
DISPLAY,#V8,A

3-8

Figure 3-2. CID Sequence Example

SKIPIF, 9,6T,#V10; DISPLAY,#V7,A
SKIPIF, 8,GT,#V10; DISPLAY,#V6,A
SKIPIF, 7,6T,#V10; DISPLAY,#V5,A
SKIPIF, 6,GT,#V10; DISPLAY,#V4 A
SKIPIF, 5,GT,#V10; DISPLAY,#V3,A
SKIPIF, 4,GT,#V10; DISPLAY,#V2,A
SKIPIF, 3,GT,#V10; DISPLAY,#V1,A
MESSAGE, " STORED TRACEBACK ENDS "
]

Figure 3-3. Defined Group

However, a simpler way would be to use the system
editor to make the required changes. This can be
done if the following steps are performed:

1. Save the definition on a file using the SAVE
command .

2. 1Issue a SUSPEND command.

3. Use the editor to make the desired changes to
the definition on the saved file.

4, Issue a DEBUG(RESUME) system command. This
will reactivate CID at the point of suspension.

5. Issue an appropriate CLEAR command to remove
the old definitionm.

6. Issue a READ on the saved file containing the

edited definition., This will reconstitute the
definition establishing it in its revised form.

60481400 C

SYNTAX OF LANGUAGE-INDEPENDENT COMMANDS a

This section describes the syntax of language-—
independent CID commands. Descriptions of the
language~independent commands themselves are
contained in section 5.

FORMAT OF LANGUAGE-
INDEPENDENT COMMANDS

CID commands begin with the command name
(keyword). Many language-independent commands have
a short form that can be entered in place of the
command name. Normally, each line entered from the
terminal is considered a complete command. More
than one command can be entered on a line if a
semicolon separates the commands. Language—
independent and language-dependent commands can be
entered on the same line.

Commands cannot be continued across lines. The
maximum length of a command line is 150 6-bit
characters. Characters beyond 150 are ignored.

CID can be used from a NOS ASCII mode terminal.
The command line is limited to a maximum of 75
12-bit escape code ASCII characters. CID can be
used to debug ASCII mode BASIC programs under NOS.
NOS/BE, however, does not support input or output
of lowercase ASCII characters with CID,

If an asterisk appears as the first nonblank
character of a line, or as the first nonblank
character after a semicolon, the remaining
characters are considered to be a comment.

Parameters of language-independent commands must be
separated from the command name and from each other
by a comma, a space, or both. Excess spaces are
ignored between parameters. (Examples in this
manual show a comma as the delimiter between
parameters, although a space might also appear to
improve readability.)

The COBOL CID commands described in section 6 have
the same names as many of the language-independent
commands described in section 5. To avoid
ambiguities when the home program is a COBOL
program compiled for use with CID, you should enter
language—independent commands in short form or with
a comma following the name of the command. CID
assumes any ambiguous command is a COBOL CID
command when the home program is a COBOL program
compiled for use with CID. ‘

Parameters in language-independent commands are
order dependent. Optional parameters at the end of
a parameter list can be omitted entirely. However,
when optional parameters within a list are omitted,
the positions of .the parameters must often be
acknowledged by commas. The figures in the command
descriptions show whether or not the commas are
necessary.

60481400 D

ADDRESSES

In language-independent commands, addresses can be
specified as absolute addresses, module relative
addresses, entry point addresses, overlay ad-
dresses, or source language symbol addresses. A
range of addresses can also be specified in most
CID commands.

ABSOLUTE ADDRESSES

The following numeric 1literal notations are
available for conveying addresses relative to the
start of the field length:

e Central Memory Field Length:

Form Base

n Decimal
nD Decimal
mB Octal

e ECS/LCM Field Length:

Form Base
X.n Decimal

X.nD Decimal
X.mB Octal

where n 1is a decimal numeral of up to 17 digits
and m 1is an octal numeral of up to 20 digits.

Examples of absolute addresses are:

29 CM address 29

29D CM address 29

35B CM address 29 (equals 35g)

X.48 ECS/LCM address 48

X.48D ECS/LCM address 48

X.60B ECS/LCM address 48 (equals 60g)

When used in a parameter requiring a value, these
numeric literals supply the address as the value.
When used as an address, only the lower 18 bits are
used for central memory addresses, and the lower 24
bits for ECS/LCM addresses.

MODULE RELATIVE ADDRESSES

You can specify addresses relative to loader blocks
or modules. Names of modules and entry points can
be directly specified if the names contain only

letters and digits and begin with a letter. Names
not conforming to this rule can be expressed as

41 1

literals delimited by dollar signs (§). For
example:

$AB.CD$ is the equivalent of AB.CD.

Specific address locations within a loader block or
module are designated as follows:

Module Type

Program module

Designation
P.progname n

Labeled common block
(central memory)

C.blockname n

Labeled common bloék
(extended memory)

XC.blockname n

Blank common block C. n

e The underscore (__) in CID indicates a relative
address in a program module or common block.
The symbol to the left of the wunderscore
specifies a block or module name. The symbol
to the right of the underscore specifies the
relative address within the block or module.

@ The n is an integer constant which is the
address of the desired location relative to the
start of the block or module. (That is, C. 0
is word 0, the first word of the wunlabeled
common block.)

o For a block or module L words long, the maximum
allowed value of n is L-1. The error RELATIVE
ADDRESS OUTSIDE BLOCK results if n is larger
than L-1. (L-1 references the last word of the
block or module.)

° Other notations for n are as follows:

nD (decimal notation)
nB (octal notation)

e When overlays are used, modules in separate
overlays can have the same name. A specific
module can be specified by prefixing the module
designation by an overlay designation, as
described later in this section.

In the absence of an overlay qualifier, the
selection is made from the overlays currently
loaded.

Examples of module relative addresses are:

e C.BLKA 9
The 10th word of common block BLKA

e P.PROGC 22B
The 19th word of program PROGC (22g is 18)

As a notational shorthand convenience, P.program

name can be omitted in a program module relative

address when the program intended is that
designated as the home program.

Whenever CID obtains control from your program, the

program module most Trecently in execution is

automatically made the home program. The SET,HOME

command can be entered to designate some other
program module as the home program.

4-2

Examples of references to addresses in the home
program are:
0 The first location in the home program

_72B Relative location 72g words after the
first word in the home program

ENTRY POINT ADDRESSES

Entry point locations are designated as follows:
E.entryname
where entryname is the name of the entry point.
While duplicate entry point names are allowed in a
load, the Loader always uses the first occurrence
of an entry point to link references. CID follows
the same convention; thus, duplicates will not be
accessible.
Examples of entry point addresses are:
o E.START
Location of entry point START
e E.FRED

Location of entry point FRED

OVERLAY ADDRESSES

Overlays are designated on CID input and output
using the same scheme as in FORTRAN and COMPASS
directives, namely:

Overlay Type Designated As
main (0,0)
primary (p,0)
secondary (p,s)

where p and s are positive integers.

Program names can be qualified with an overlay
prefix. For example:

(p,s)P.PROGA
This indicates the program named PROGA in overlay
(p,8). Output reports qualify locations by desig-
nating the overlay as follows:

P.PROGA L.4 (OF (2,5))

References to an overlay that is not currently
loaded can be made only in the following commands:

e CLEAR,BREAKPOINT
e CLEAR,TRAP

e LIST,BREAKPOINT
e LIST,MAP

e LIST,TRAP

e SAVE,BREAKPOINT

e SAVE,TRAP

60481400 D

® SET,BREAKPOINT
e SET,HOME

® SET,TRAP

SOURCE LANGUAGE SYMBOL ADDRESSES

Symbols contained in a source program can be
entered in language-independent commmands when the
program is a BASIC, COBOL, or FORTRAN program
compiled for use with CID.

BASIC Symbols

You can enter statement numbers and variable names
in language-independent commands to reference
locations within BASIC programs compiled for use
with CID.

A statement reference refers to the beginning of a
BASIC source statement and has the following format:

L.n or S.n

The n is the line number of the BASIC line. L and
S stand for line and statement, respectively. L.n
and S.n can be used interchangeably when referring
to BASIC statements because line numbers and state-
ment labels are synonymous in BASIC. The value of
a statement reference 1is the address of the
beginning of the statement.

A variable name reference consists of just the name
as it appears in the BASIC program. The value of a
variable name reference is the address of the named
variable. When an array name is the same as a

simple variable name, the simple variable is used
unless a specific grray element is referenced.

Subscripts in language-independent commands must be
constants. \

Because BASIC stores array elements in row order,
all the elements of one row are contiguous in
memory. The address range B(1,2)...B(1,5), there-
fore, contains elements B(1,2), B(1,3), B(1l,4), and
B(1,5). The range B(1,1)...B(3,1) contains all the
elements of the first two rows plus element B(3,1).

Variables that are function formal parameters are
only known when the program is executing the
function. A trap or breakpoint must occur inside a
function before its formal parameters can be
referenced in CID commands.

String variables are referenced in the same way as
numeric variables, by using the variable name.
Special care must be taken when wusing string
variables in language-independent commands such as
DISPLAY and ENTER. BASIC stores its string data in
a dynamic string memory area. String variables
contain pointers to the dynamic string area rather
than string data. DISPLAY, ENTER, and MOVE
commands, therefore, affect the string pointer word
rather than the string. These commands should not
be used to manipulate BASIC string variables.
Instead, the BASIC CID PRINT and LET commands
described in section 6 should be used. Substring
notation is not available in language-independent
commands.

60481400 C

'COBOL Symbols

You can enter 1line numberé, procedure names, and
identifiers to reference 1locations within COBOL
programs compiled for use with CID.

A line reference refers to the beginning of a COBOL
source line and has the following format:

L.n

where n is the sequence number of the COBOL source
line being referenced. The sequence number is
assigned by you if the PSQ option is used in the
COBOL5 control statement or by the compiler if the
PSQ option is not used. A line reference cannot
reference a 1line that contains a statement
continued fnom a previous line. The value of a
line reference is the address of the beginning of
the line.

A procedure reference is a reference to a COBOL
paragraph or section in the Procedure Division. A
procedure reference has the following format:

PR.procname

where procname is a COBOL procedure name (that is,
the name of a paragraph or section in the procedure
division) The forms procname can take are:

® Paragraph name
® Section name
@ Paragraph name OF section name .

The value of a procedure reference is the address
of the beginning of the procedure. CID does not

check for duplicate paragraph names in different
sections when you specify an unqualified paragraph

name.

An identifier reference is identical to an
identifier for a data item in the COBOL program.
Table items are specified by the table name
followed by numeric constant subscripts. Reference
modification cannot be used in language-—
independent commands. The value of an identifier
reference is the address of the first word con-
taining the data item. Qualification is allowed in
identifier references.

FORTRAN Symbols

You can enter line numbers, statement labels, and
variable names in language-independent commands to
reference locations within FORTRAN programs
compiled for use with CID.

A line number reference refers to the beginning of
a FORTRAN source line and has the following format:

Len

The n is the compiler—assigned line number in the
program unit (or the sequence number supplied by
the program if the SEQ parameter was specified when
the compiler was called). Line numbers can be
determined from the compiler output listing. The
value of a line number reference is' the address of

the beginning. of the FORTRAN line. Line number
references can only reference lines that begin with
executable statements that are not continued from a
previous line.

A statement label reference has the following
format:

S.n
The n is a FORTRAN statement label. Only labels on

executable statements are valid for referencing in
CID commands. The value of a statement label

reference is the address of the beginning of the.

statement.

A variable name reference consists of the variable
name as it appears in the FORTRAN program. The
value of a variable reference is the address of the
named variable. Arrays can be referenced either by
the name of the array (to indicate the whole array)
or by specific array elements, depending on the
context. Subscripts can only be constants in
language-independent commands.

Because FORTRAN stores array elements in column
order (the leftmost subscript varying fastest), the
address range A(1,5)...A(5,5) includes elements
A(1,5), A(2,5), A(3,5), A(4,5), and A(5,5). On the
other hand, the address range A(l,1)...A(1,5)
includes all elements in rows 1 through 4 plus
element A(1,5) of row 5.

ADDRESS RANGE SPECIFICATION

An address range is a set of consecutive address
locations used to designate a specific area in a
program.

An address range can be specified in one of two
ways:

® Module reference

® Ellipsis notation

MODULE OR BLOCK REFERENCING

The wvarious types of modules or blocks that can be
referenced in their entirety (that is, the entire
address range where they are loaded) are as follows:

Module or Block Type Designation
Program module P.progname
Labeled common block C.blockname
(central memory)

Labeled common block XC.blockname
(extended memory)

Unlabeled common block C.

Examples of module referencing are:
e C.BLKA

The entire labeled common block is BLKA.

- b=ty

e XC.BLKX

The entire common block is BLKX and is stored
in extended memory.

e P.PROGB

The entire program module is PROGB.’

ELLIPSIS

The most general way to specify an address range is
by using the following notation called the ellipsis

notation:

address expression...address expression

The ellipsis notation can contain two or more
periods. In this manual, three periods are used.
The ellipsis notation must obey the following rules:

® No spaces are allowed before, between, or
following the periods.

® The first address must not be greater than the
second one.

® The range must not span an overlay boundary.

e Both expressions must be for the same memory
type (central or extended memory).

If the indicated range goes beyond the field length
or extends into locations not allowed by CID, a
warning message is issued. If an affirmative
acknowledgment is issued in response, truncation of
the range to accessible locations occurs.

An example of the ellipsis notation is:
C.BLKA 0...C.BLKB 0-1

This example specifies the address range beginning
with the first location in common block BLKA and
ending with the location preceding the first
location in common block BLKB.

If no other modules are loaded between BLKA and
BLKB, the preceding address range specification can
be written as:

C.BLKA

VALUES

Values 1in language—independent commands can be
specified as numeric constant values, address
values, or debug variables.

NUMERIC CONSTANT VALUES

Numeric constants can be entered as values in
language-independent commands. Numeric constants
can be of types decimal integer or octal integer.

Decimal Integer Constants

A 60-bit integer constant (figure 4-1) consists of
a string of digits optionally preceded by a plus
sign (+) or a minus sign (-).

60481400 C

[] o

TABLE 4-1. DEBUG STATE VARIABLES

Variable Can Use In Description
nnn String of decimal digits Expressions
Figure 4-1. Decimal Integer Constant 3P Yes Number of break-
points currently
defined
Octal Integer Constants #Gp Yes Number of groups
currently defined
A 60-bit octal constant (figure 4-2) is a string of
1 to 20 octal digits (0 through 7) followed by the #HOME No Home program name
letter B.
#TP Yes Number of traps
3 currently defined

[:] nnnB

nnn String of 1 to 20 octal digits

Figure 4-2. Octal Integer Constant

ADDRESS VALUES

Addresses can be used as values in language-
independent commands. When an address is used as a
value, the value consists of the address itself and
not the contents of the address.

DEBUG VARIABLES

There are several available variables stored within

CID itself. They all have identifiers beginning
with #. Debug variables are classified in five

categories:

® Debug user variables

® Debug state variables
® Program state variables

® Interpret mode variables

® Register state variables

Debug User Variables

Ten debug user variables, designated #V1, #V2,...,
#V10, are available. They can be given values by
the ENTER command (described in section 5) and used
in expressions. Initially their values are zero.

Debug State Variables

Debug state variables provide information about the
debug session. They are updated by CID and you
cannot directly change them. However, some CID
commands change the values of ‘these variables.
Debug state variables with numeric values can be
used in expressions. The debug state variables are
shown in table 4-1.

60481400 C

Program State Variables

Program state variables provide information about
the state of the program. Each time program
execution is suspended, the program state variables
are updated by CID to reflect the current status of
the program. You cannot change the values of the
program state variables. The program state
variables are shown in table 4-2. #LINE, #PROC,
and #P are undefined before program execution is
initiated at the beginning of a debug session. The
variables #ERRCODE and #CPUERR are described in
more detail in figure 4-3.

TABLE 4-2. PROGRAM STATE VARIABLES

Can Use In

Variable Expressions

Description

#CPUERR Yes Mode error code

#ERRCODE Yes Reprieve or
execution—-time
generated error
code

#FE Yes Extended memory
field length
#FL Yes Central memory
field length
#LINE No Current BASIC,
COBOL, or FORTRAN
line number

#P Yes Program address
register

#PROC No Current COBOL pro-
cedure name in the
form of a para-
graph name not
qualified by a
section name.

4=5

This is meaningful only in an ABORT trap.

the hardware

#ERRCODE System error code issued on an abort
This is meaningful only in an ABORT trap. This value can be displayed or used as a source
of data, but it cannot be changed. When displayed with the DISPLAY command, the default is
integer format, but other format options can be specified.
Value Meaning
0 Normal termination
1 Time Limit
2 CPU error exit
3 PP abort
4 CPU abort
5 PP call error
6 Operator drop
7 Operator kill
8 Operator rerun
9 Control statement error
10 ECS parity error
13 Auto-recall error
14 Job hung in auto-recall
15 Mass storage limit
16 PP program not in library
17 I/0 Limits
31 Invalid store, fetch, dump
32 Terminal interrupt
100 thru 299 Basic execution-time error
300 COBOL execution—-time error
#CPUERR Hardware-detected mode error

This value can be displayed or used as a source
of data, but cannot be changed. When displayed with the DISPLAY command, octal display mode
is enforced regardless of the option specified.

Mode errors reported from job termination are as follows:

Address is out of field Length or floating-point operand has undefined value
Infinite operand used or floating-point operand has undefined value
Infinite operand used, address referenced outside field Length, or floating-

0 Program attempted to jump to location O
1 Address referenced outside field length
2 Infinite operand used
3 Address out of field length, or infinite operand
4 Floating~point operand has undefined value >
5
6
7
point operand has undefined value
10

Program attempted to use an exchange jump instruction that does not exist on

Figure 4-3. Abort Information Variables

Interpret Mode Variables

Interpret mode variables provide more detailed
program or machine status. They are updated by CID
only when your program is executing in interpret
mode. Thus, their values are meaningful only in
this case. Interpret mode variables are listed and
described in figure 4-4. The variables #EW, #PC,
and #EA are particularly useful when STORE and
FETCH traps (described in section 3) are used.

Register State Variables

Register state variables are updated by CID and
reflect the current contents of the hardware
registers at the time of suspension of program
execution. These variables are listed and
described in table 4-3.

46

EXPRESSIONS

Expressions are used in CID command parameters as
an addresses or as values. For example, the syntax
of the ENTER command, as described in section 5, is
as follows:

ENTER,value,address

The first parameter is to be used as a value; the
second as an address, Both parameters are
specified with expressions.

When an expression is used as a value, all 60 bits
of the expression result are used, and no checking
is performed to determine if the value is a valid

address.

When an expression is.used as a central memory
address, only the lower 18 bits of the expression

60481400 D

#EA

#EW

#1

#INS

#INSL

#

#K

#HOP

#PA

#PARCEL

#PC

Effective address of current instruction.

For a CM fetch, #EA is the address from which the word is fetched. For a CM store, #EA is
the address where the word is stored. For a transfer of control instruction, #EA is the
address where control is transferred. For other instructions, #EA is undefined. The value
of #EA can be displayed or used as a source of data. When #EA is displayed with the DISPLAY
command, the default display mode is type address. If an instruction such as SA6 K is
trapped, then #EA has the value K.

Effective word.

For a CM fetch or store, #EW is the value fetched or stored. Otherwise, #EW is undefined.
This value can be displayed or used as a source of data. When displayed with the DISPLAY
command, the default display mode is octal. If an instruction such as SAé K is trapped, then
#EW has the same value as #X6.

i field of current instruction.

This value can be displayed or used as a source of data, but it cannot be changed. When
displayed with the DISPLAY command, the default display mode is octal.

Current instruction as a number.

This value can only be displayed. When displayed with the DISPLAY command, the default
display mode is octal.

Current instruction length (15, 30, or 60).

This value can be displayed or used as a source of data, but it cannot‘be changed. When
displayed with the DISPLAY command, the default display mode is decimal.

j field of current instruction.

This value can be displayed or used as a source of data, but it cannot be changed. When
displayed with the DISPLAY command, the default display mode is octal.

k or K field of current instruction.

This value can be displayed or used as a source of data, but it cannot be changed. When
displayed with the DISPLAY command, the default display mode is octal.

Operation code of current instruction.

This item is considered to be just two octal digits; therefore, in certain cases the i field
of the instruction must be examined in order to determine the exact instruction. For exam-
ple, RJ and ECS/LCM instructions all have #0P=01. This value can be displayed or used as a
source of data, but it cannot be changed. When displayed with the DISPLAY command, the
default display mode is octal.

Previous address.

For a CM fetch or store, #PA is the previous address stored in the A register used to do
the store or fetch. Otherwise, #PA is undefined. This value can be displayed or used as
a source of data, but it cannot be changed. When displayed with the DISPLAY command, the
default display mode is type address.

Instruction parcel counter.

Parcels are numbered left to right from O to 3. This value can be displayed or used as a
source of data, but it cannot be changed.

Previous contents.

For a CM store, #PC is the previous contents prior to the store; for a CM fetch, #PC is the X
register value prior to the fetch. Otherwise, #PC is undefined. This value can be displayed
or used as a source of data, but it cannot be changed. When displayed with the DISPLAY com-
mand, the default display mode is octal.

60481400 C

Figure 4~4. Interpret Mode Variables

TABLE 4-3. REGISTER STATE VARIABLES

Variable Description

#A All A registers.

This form is only valid for display pur-
poses. When displayed with the DISPLAY
command, the default display mode is
octal; the contents of all A registers
are displayed.

#A1 Register Ai where 0 < i < 7.

The data in the specified A register is
regarded as a signed 18-bit number.
These values can be displayed, used as a
source of data, or changed. When dis-
played with the DISPLAY command, the
default display mode is octal.

#B All B registers.

This form is only valid for display pur-
poses. When displayed with the DISPLAY
command, the default display mode is
octal.

#81 Register Bi where 0 < 1 < 7.

The data in the specified B register is
regarded as a signed 18-bit number.
These values can be displayed, used as a
source of data, or changed. When dis-
played with the DISPLAY command, the
default display mode is octal.

#REG Means all registers.

This form is only valid for display pur-
poses. When displayed with the DISPLAY
command, the default display mode is
octal.

#X All X registers.

This form is only valid for display pur-
poses. When displayed with the DISPLAY
command, the default display mode is
octal.

#Xi Register Xi where 0 < i < 7.

The data in the specified X register is
regarded as a signed 60-bit number.
These values can be displayed, used as a
source of data, or changed. When dis-
played with the DISPLAY command, the
default display mode is octal.

result are used. When it is used as an extended
memory address, the lower 24 bits are used.
Furthermore, the value is checked when it is used
to ensure it constitutes a valid address.

Simple expressions in language-independent commands
consist solely of an address reference, a debug
variable, or a numeric constant value. More

complicated expressions can be formed by combining
one or more simple expressions with one or more
operators. There are three operators: + , - ,
and !.

Parentheses can be used to group terms into a
subexpression. When encountered, the subexpression
is evaluated before proceeding further with the
evaluation indicated by any pending operators or
remaining terms.

All CID expressions evaluate to a signed 60-bit
integer. Expressions must not contain any spaces.

ADDITION AND SUBTRACTION OPERATORS

The operators + and - can appear in an
expression, indicating that addition or subtraction
of the values of the adjacent terms is to be
performed.

Individual terms are evaluated and algebraically
summed in order left to right. Sixty-bit integer
arithmetic is wused in performing the indicated
addition or subtraction. That is, no intermediate
or final result can exceed a magnitude of
576460752303423487. No checks are made for
overflow.

If + or - precedes the first or only term in an
expression, the expression is evaluated as if a
term preceding the operator existed with a wvalue
of 0. Thus, - in this case acts as a negation
operator and + acts as an identity operator
(returning its argument as its result).

Examples using the addition and subtraction
operators are:

e #FL-1

This expression is the highest location in the
field length.

® E.PRGENT+1
This expression evaluates to the address of
entry point PRGENT plus 1, which is one word
beyond entry point PRGENT.

® C.BLKA 0-1

This expression evaluates to the address
preceding common block BLKA.

VALUE OPERATOR (!)

In expressions, the exclamation point (!) is a
prefix operator for the expression it prefixes.
The lower 18 bits of the value are used as an
address. The value stored at that address is the
result.

Examples of the value operator are as follows:

12 Value at address 2

1#P Value at the current location

60481400 C

There must be no spaces between the (!) character
and the address.

The value operator has a higher precedence than +
or - , so that in multiple term expressioms it is
performed before + and -. For example, !2+3
means the same as 3+!2. The resulting expression
is a value 3 greater than the value stored in the
word at location 2.

If you wish to express the value stored at a
location designated by a compound expression,
parentheses can be used. For example:

1(C.BLKA_0+#V1)

60481400 C

This expression signifies the value stored at the
location C.BLKA 0+#Vl1.

Multiple ! operators can be used to achieve
indirect addressing. For example, !!C.BLKA O
represents the value of the word whose address is
stored at location C.BLKA 0. !C.BLKA 0 represents
the value of the word at location C.BLKA 0, and !
applied to that value returns the word whose

address is in location C.BLKA 0.

It is not possible to indirectly access one
extended memory word through another; all indirect
addresses are assumed to be central memory
addresses.

LANGUAGE-INDEPENDENT COMMANDS 5

This section contains descriptions of the language-
independent CID commands. Language—independent
commands are classified as follows:

® CLEAR commands

® LIST commands

® SAVE commands

® SET commands

® Other language-independent commands

The syntax of language-independent commands is
described in section 4.

CLEAR COMMANDS

CLEAR commands allow you to remove objects created
via the SET command, such as breakpoints, traps,
and groups. The variants of a CLEAR command can be
expressed in abbreviated forms (see table 5-1).
The general form of a CLEAR command is:

CLEAR,object ,parameters
where object is the object to be cleared, and

parameters is the (optional) 1list of qualifiers
associated with that particular object.

CLEAR,AUXILIARY COMMAND

The CLEAR,AUXILIARY command (figure 5-1) deacti-
vates the auxiliary output file. If an auxiliary
output file has been defined using the

SET,AUXILIARY command (described in this section),
that file is .closed when the CLEAR,AUXILIARY
command is executed.

{CLEAR,AUXILIARY}
CAUX

Figure 5-1. CLEAR,AUXILIARY Command

CLEAR,BREAKPOINT COMMAND

The CLEAR,BREAKPOINT command (figure 5~2) removes
specified breakpoints. You can remove all break-
points or a selection of breakpoints.

An example of the CLEAR,BREAKPOINT command is:

CB,P.WHALERS 44 ,P.BAY,(1,5),P.WHARF_ 26

This command clears the single breakpoint from
address 44 in program WHALERS, clears all break-
points in program BAY, clears all breakpoints in
the (1,5) overlay, and clears the single breakpoint
from address 26 in program WHARF.

CLEAR,GROUP COMMAND

The CLEAR,GROUP command (figure 5-3) allows you to
remove group definitions. If the names parameter
is coded as *, all groups are removed.

TABLE 5-1. CLEAR COMMAND VARIANTS

Command Short Function
Form

CLEAR ,AUXILIARY CAUX Closes the current auxiliary output file and clears all the
auxiliary output options. This command can only be executed if
standard output is currently defined.

CLEAR , BREAKPOINT CB Clears defined breakpoints.

CLEAR ,GROUP CG Clears specified groups.

CLEAR, INTERPRET CI Turns off interpret mode. This command has the same effect as
SET, INTERPRET,OFF.

CLEAR, OUTPUT cout Turns off the standard output. This command can be executed
only if an auxiliary output file is currently defined.

CLEAR, TRAP CT Clears specified traps.

CLEAR ,VETO cv Turns off veto mode. This command has the same effect as
SET,VETO,OFF.

60481400 C

{((:;EAR,BREAKPOINT} [,breakpoint-List]

separated by commas or spaces.
Listed below. :

Location

breakpoint-list List indicating which breakpoints are to be cleared. If no Llist is specified, a warn-
ing message that all breakpoints will be cleared is issued. List elements must be
Possible List elements and the breakpoints cleared are

* Default; all breakpoints
(p,s) ALl breakpoints in the specified overlay
program ALL breakpoints in the specified program

The breakpoint at the specified Location
address...address AllL breakpoints in the specified address range

#x Breakpoint number x

Figure 5-2. CLEAR,BREAKPOINT Command

{ngAR,GROUP} L,group-List]

and take the following forms:

group-list List indicating which groups are to be cleared. If no List is specified, a warning message
that all groups will be cleared is issued.

* Default; all groups are cleared.

name The group with the given name is cleared.

#x 6roup number x is cleared.

List elements are separated by commas or spaces

Figure 5-3.

CLEAR,INTERPRET COMMAND

The CLEAR,INTERPRET command (figure 5-4) turns off
interpret mode. This command has the same effect
as SET,INTERPRET,OFF described 1later im this
section.

{ CLEAR, INTERPRET }
cI

Figure 5-4. CLEAR,INTERPRET Command

CLEAR,OUTPUT COMMAND

The CLEAR,OUTPUT command (figure 5-5) turns off CID
output to the standard output file. An auxiliary

output file must be defined before the CLEAR,OUTPUT
command can be executed (see SET,AUXILIARY command).

52

CLEAR,GROUP Command

{CLEAR,OUTPUT }
couT

Figure 5-5. CLEAR,OUTPUT Command

CLEAR,TRAP COMMAND

The CLEAR,TRAP command (figure 5-6) removes speci-
fied traps. If the trap-list is coded as *, all
traps specified by type are removed. If type is
coded as *, traps of all types are removed.

CLEAR,VETO COMMAND
The CLEAR,VETO command (figure 5-7) turns off veto

mode. This command has the same effect as
SET ,VETO,OFF described later in this section.

60481400 C

{CLEAR,TRAP

T } stypel ,trap-Llist]

cleared.

Location

cleared.

type Type of traps to be cleared. * indicates all trap types.

trap-list List indicating which traps of the specified type are to be cleared. If no List is speci-
fied, a warning message that all traps will be cleared is issued. List elements are
separated by spaces or commas and take the following forms:

* Default; all traps of the specified type are cleared.
(p,s) ALl traps of the specified type in overlay (p,s) are cleared.
program ALl traps of the specified type in the specified program module are

ALL traps of the specified type in ‘the specified Location are cleared.

address...address ALl traps of the specified type in the specified address range are

#x Trap #x is cleared.

Figure 5-6.

{cu.em,vero}
cv

Figure 5-7.. CLEAR,VETO Command

LIST COMMANDS

LIST commands allow you to display breakpoint,
trap, and group names; command sequences; infor-—
mation about the program; and information about the
state of CID itself. The LIST commands have
abbreviated forms, such as LB for LIST,BREAKPOINT
and LT for LIST,TRAP. The general form of a LIST
command is:

LIST,object[,parameters]

where object is the particular object about which
information 1is required, and the parameters
indicate which particular objects to display. The
LIST commands are shown in table 5-2. The term
header refers to the parameter supplied with the
SET command used to define a trap, breakpoint, or
group, together with its associated number.

LIST,BREAKPOINT COMMAND

The LIST,BREAKPOINT command (figure 5-8) displays
information relevant to breakpoints. The way in
which the breakpoints are listed depends on the way
in which the breakpoint-list elements are speci-—
fied. If a list element is specified as an address
range, such as a program, then the locations of any
breakpoints in that range are displayed. 1f
gpecific breakpoints are given, then the bodies of
the breakpoints are listed as well.

60481400 C

CLEAR, TRAP Command

If no breakpoint exists at the specified locationm,
the following message is displayed:

NO BREAKPOINT location

An example of the LIST,BREAKPOINT command is:
LIST,BREAKPOINT,P.MASSON 20,P.ALMADEN

This command displays the header and body of the
breakpoint at word 20 in program MASSON, and the
locations of all breakpoints in program ALMADEN.

LIST,BREAKPOINT, #1,#4,#7

This command displays the headers and bodies (if
any) of breakpoints 1, 4, and 7.

LIST,GROUP COMMAND

The LIST,GROUP command (figure 5-9) displays infor-—
mation relevant to groups. The command displays
the definitions of those groups specified in the
group-list. If the group-list is specified as *,
then the names of all currently existing groups
will be displayed.

If no group of the specified name exists, the
following message is displayed:
NO GROUP group—name
An example of the LIST,GROUP command is:
LIST,GROUP,*; LIST,GROUP,SYNERGY
The first command displays the names of all cur-
rently defined groups; the second command displays

the definitions and all the CID commands which make
up the body of the group called SYNERGY.

TABLE 5-2. LIST COMMAND VARIANTS

Short
Command Form Function
: — =

LIST ,BREAKPOINT 1B Lists the headers and bodies of specific breakpoints

LIST,GROUP ' LG Lists the names of all groups, or lists the bodies of specific
groups

LIST ,MAP IM Lists load map information about the program or about overlays
in the program

LIST ,STATUS Ls Lists home program, terminal and auxiliary output options, and
the state of interpret mode and veto mode

LIST,TRAP . LT Lists the headers and bodies of gpecific traps

LIST,VALUES w Lists the names and values of all symbols from a specified
program

{thT’BREAKPOINT} [, breakpoint-list]

breakpoint-list List indicating which breakpoints are to be Listed. Default is *. List elements are
separated by commas or spaces and take the following forms:

* The locations and frequency parameters of all breakpoints are
Listed.
(p,s) The locations and frequency parameters of all breakpoints in

overlay (p,s) are Listed.

P.progname The locations and frequency parameters of all breakpoints in
the specified program are listed.

address...address The headers and bodies of all breakpoints in the specified
address range are listed.

Llocation The header and body of the breakpoint at the specified lLocation
is listed.

#x The header and body of breakpoint #x are listed.

. Figure 5-8. LIST,BREAKPOINT Command

{LIST,GROUP
L6

} [,group-list]

group-list List indicating which groups are to be Listed. List elements are separated by commas or
spaces and take the following forms:

* Default; the names of all groups are displayed.
group-name The definition of the group with the specified name is displayed.

#x The definition of group number x is displayed.

" 5-4

Figure 5-9. LIST,GROUP Command

60481400

LIST,MAP COMMAND

The LIST,MAP command (figure 5-10) displays load
map information relating to programs, entry points,
and overlays. LIST,MAP can be abbreviated to LM.

LIST,STATUS COMMAND

The LIST,STATUS command (figure 5-11) gives you
information about the status of the CID environ-
ment. LIST,STATUS can be abbreviated to LS. The
items displayed by the LIST,STATUS command are as
follows:

® The name of the current home program

® The current output options for the CID standard
output file

® The name of the current auxiliary output file
and auxiliary output options

® The current state of the veto mode switch
® The current state of the interpret mode switch

® The number .of breakpoints, traps, and groups
currently defined

I.ISl' TRAP COMMAND

The LIST,TRAP command (figure 5-12) 1lists infor-
mation relevant to traps. If the trap-list
parameter specifies a list of locations or trap
numbers, the command displays trap definitions. If

the trap-list is specified as *, then all traps of
the type specified by type are displayed. If type

is specified as *, then all traps are displayed.
LIST,TRAP can be abbreviated to LT.

The way in which the traps are listed depends upon
the way in which the trap-list elements are
specified. If a list element is specified as an
area, such as a program, then the locations of any
traps in that area are displayed. If specific
traps are given, then the bodies of the traps are
displayed.

{ LIST,STATUS }
LS

Figure 5-11. LIST,STATUS Command

If no traps exist at a specified place, the
following message is displayed:

NO type TRAP place
Examples of the LIST,TRAP command are:
e LIST,TRAP,RJ,P.PRUNE 50...P.PRUNE 200

This command displays the headers and bodies of
all RJ traps (if any) from word 50 to word 200
in program PRUNE.

e LIST,TRAP,RJ,*

This command displays the headers of all RJ
traps that exist.

® LIST,TRAP,STORE,P.MACYS

This command, where just the name of a program
is given, will display the definitions of any
trap of the specified type (in this case STORE)
whose range lies within or encompasses the
specified program. The same rule applies to
common blocks and overlays.

LIST,VALUES COMMAND

The LIST,VALUES command (figure 5-13) 1lists source
program values in specified BASIC, COBOL, and

FORTRAN program modules compiled for use with CID.
The setting of the home program has no effect on
the LIST,VALUES command.

The LIST,VALUES command can generate a considerable
quantity of output. You might not want all of the
output to appear on the terminal, and can elect to
send the output to the auxiliary output file by
entering the SET,AUXILIARY command described in
this section.

{LIST,HAP

N } [,place-list]

played.

place-lList List of places for which Load map is displayed. Default is *. List elements are separated
by commas or spaces and can take the following forms:

* Names of all program modules and common blocks in the program are displayed.
In an overlay environment, designations of overlays are L1sted and those
currently loaded are flagged with an asterisk.

(p,s) Names of all program modules and common blocks in overlay (p,s) are dis-

P.progname Origin, length, and all entry points in the specified program are displayed.

Figure 5-10.

60481400 C

LIST , MAP Command

{LIST'TRAP} stypel,trap-List]

trap-list

*

LT
type Type of traps to be lListed. * indicates all trap types.
List indicating which traps of the specified type are to be listed. Default is *, List

elements are separated by commas or spaces and take the following forms:

The scopes and types of all traps of the specified type are displayed.

(p,s) The scopes and types of all traps of the specified type in overlay
(p,s) are displayed.

P.progname The scopes and types of all traps of the specified type in the speci-
fied program are displayed.

address...address The scopes and types of all traps of the specified type in the speci-
fied address range are displayed.

location The header and body of the trap in the specified location are
displayed.

#x The header and body of trap #x are displayed.
Figure 5-12. LIST,TRAP Command

{t$ST,VALU§s} [,place-list]

place-list

must be Lloaded.

List indicating which program modules are to have their values listed. List elements are
separated by commas or spaces and take the following forms:

* ALl values currently loaded are displayed.
(p,s) ALl values in overlay (p,s) are displayed. Overlay (p,s) must be loaded.
progname ALl values in the specified program are displayed. The specified program

Figure 5-13.

BASIC Program Modules

For each specified BASIC program module compiled
for use wtih CID, the LIST,VALUES command lists all
variable names in alphabetical order along with the
current values of the variables. Values are for-
matted according to the variable type as declared
in the BASIC program.

COBOL Program Modules

For each specified COBOL program module compiled
for use with CID, the LIST,VALUES command lists all
the data items in the same order that the data
items are written in the data division of the COBOL
source program. The entire data structures are
shown in the listing, including group item name and
the values of the elementary data items.

5-6

LIST,VALUES Command

When tables are listed, the table name is given
only for the first element. Subscripts are listed
for all of the table elements.

Data items that share the same memory space with
other data items (as the result of a REDEFINES
clause) are not necessarily listed in a readable
form. Changing the value of one data item changes
the values of the other data items sharing the same
space. The new values of the other data items
might not be in a form that the LIST,VALUES command
can interpret.

FORTRAN Program Modules

For each specified FORTRAN program module compiled
for use with CID, the LIST,VALUES command lists all
variable names in alphabetical order along with the
current values of the variables. Values are
formatted according to the variable type as
declared in the FORTRAN program.

60481400 C

SAVE COMMANDS

SAVE commands copy the definitions. of breakpoints,
traps, or groups to a specified local file. The
bodies of these definitions can be edited by a text
editor while outside CID and then be replaced using
the READ command. The general form of a SAVE
command is:

SAVE,object ,filename,list

The object is the type of object that is saved, the
filename is the name of the file on which the
definitions are copied, and the 1list indicates
which particular objects are saved. The SAVE

commands are listed in table 5-3. ,

TABLE 5-3. SAVE COMMAND VARIANTS

Short

Command
Form

Function

SAVE , BREAKPOINT SAVEB Saves breakpoint

definitions

SAVE, GROUP SAVEG Saves group
definitions

SAVE , TRAP SAVET Saves trap
definitions

SAVE, * 1 Saves breakpoint,

. group, and trap
definitions

Tﬁo short form

The first line of each saved definition is the SET
command used to create the object. The READ com-
mand can be entered to reestablish the definitions
.at a later time.

[y

SAVE,BREAKPOINT COMMAND

The SAVE,BREAKPOINT command (figure 5-14) copies
specified breakpoint definitions (including break-
point bodies) to a local file. If the breakpoint-
list is coded as *, then all breakpoints are saved.

SAVE,GROUP COMMAND

The SAVE,GROUP command (figure 5-15) copies speci-
fied group definitions to a file. If the group
list is coded as *, then all groups are copied to
the file.

SAVE,TRAP COMMAND

The SAVE,TRAP command (figure 5-16) copies speci-
fied trap definitions (including trap bodies) to a
local file. If the trap-list is coded as *, then
all traps are saved.

SAVE,* COMMAND

The SAVE,* command (figure 5-17) copies all break-
point, trap, and group definitions to a local file.

SET COMMANDS

SET commands allow you to establish CID control
objects such as breakpoints, traps, groups, and so
forth. The general form of a SET command is:

SET,object,parameters

where object is the particular object that you wish
to establish and parameters is a list of qualifiers
associated with the particular object. The
different SET commands are listed in table 5-4.

{SAVE,BREAKPOINT

SAVEB } ,file-namel breakpoint-list]

file-name

Location

Logical file name of local file on which breakpoints are to be saved.

breakpoint-list List indicating which breakpoints are to be saved. Default is *. List elements are
separated by commas or spaces and take the following forms:

* ALL breakpoints are saved.
(p,s) ALl breakpoints in overlay (p,s) are saved.
P.progname ALl breakpoints in the specified program are saved.

address...address ALl breakpoints in the specified address range are saved.
ALL breakpoints at the specified location are saved.

#x Breakpoint #x is saved.

Figure 5-14. SAVE,BREAKPOINT Command

60481400 C

5-7

SAVE,GROUP
SAVEG

} ,file-name,group-List

" ALl groups are saved.

gfoup-tist List indicating which groups are to be saved.
spaces and take the following forms:

name The group with the specified name is saved.

file-name Logical file name of local file on which groups are to be saved.

List elements are separated by commas or

Figure 5-15.

SAVE,GROUP Command

{g:\\::{_mnp } +file-name, typel, trap-List]

ments are separated by commas or spaces

* AlLL traps of the
(p,s) AlL traps of the
P.progname ALl traps in the

address...address ALl traps in the
Location ALL traps in the

#x Trap #x is saved.

file-name Logical name of local file on which traps are to be saved.
type Type of traps to be saved. #* indicates all trap types.

trap-list List indicating which traps of the specified type are to be saved.

and take the following forms:

specified type are saved.

specified type in overlay (p,s) are saved.

specified program are saved.

specified address range are saved.

specified location are saved.

Default is *. List ele-

Figure 5-16.

SAVE,*,file-name

file-name Logical name of local file on
which breakpoints, groups, and
traps are to be saved.

Figure 5-17. SAVE,* Command

These language-independent SET commands do not
include the COBOL CID SET command described in
section 6. To distinguish one of these SET
commands from the COBOL CID SET command, these
commands must be entered in short form or with a
comma following the command name when the home
program is a COBOL program compiled for use with
CID.

SET,AUXILIARY COMMAND

The SET,AUXILIARY command (figure 5-18) allows you
to define an optional local auxiliary output file
which can be used as a log of the debug session.
You would most likely dispose this file either to
the terminal or to a line printer.

. 5-8

SAVE,TRAP Command

TABLE 5-4. SET COMMAND VARIANTS
Command Short Function
Form
SET ,AUXILIARY SAUX Establishes file name
and output options for
the auxiliary output
file
SET ,BREAKPOINT SB Establishes a breakpoint
SET,GROUP SG Establishes a group
SET ,HOME SH Establishes the name of
the home program
SET , INTERPRET ST Turns interpret mode on
or off
SET, OUTPUT SOUT Establishes output
options for the
standard output file
SET ,TRAP ST Establishes a trap
SET,VETO sV Turns veto mode on or
off

60481400 C

{SET,AUXILIARY
SAUX

file-name
option-Llist

Error messages
Warning messages

WO =~OEMmM

} ,file-namel option-Llist]

Name of the file to be the auxiliary output file.

List of codes arranged in any order, selected from the following:

CID output produced by command execution
Informative messages

Read command sequence (group or file) - when read
Body sequence - when it occurs (trap or breakpoint)
Terminal or standard input file echo.

List elements are not separated by commas or spaces.

i

Figure 5-18. SET,AUXILIARY Command

The options in this command determine the type of
output written to the auxiliary file. Each
SET,AUXILIARY command supersedes any previous
SET,AUXILIARY command. .

You can use the SET,AUXILIARY command in conjunc-
tion with the SET,OUTPUT command as follows:
Select options in the SET,AUXILIARY command such
that large quantities of output are stored on the
auxiliary output file; select options in the
SET,OUTPUT command such that brief messages are
output to the terminal. Whenever you need
information from the auxiliary file, suspend the
debug session (see the SUSPEND command, later in
this section), look at the auxiliary file using a
system editor, and resume the session (see the
DEBUG control statement, section 2).

It is possible to eliminate all terminal output by
issuing a CLEAR,OUTPUT command. This can only be
done, however, if an auxiliary file has been
defined with at least the E option specified.

Only one auxiliary output file can be in use at a
time. Thus, if a subsequent SET,AUXILIARY command
is issued that references a file name different
from the file name referenced in the previous
SET,AUXILIARY command, a warning message is
issued. If you respond with a positive acknowledg-
ment (ACCEPT, YES or OK), the old auxiliary output
file is closed before the new one is established.
To avoid the warning messages, you must first issue
a CLEAR,AUXTLIARY command (described earlier in
this section). If a subsequent SET,AUXILIARY
command is issued merely to change output options,
but retains the same file name, no warning message
is issued, and no closing of the file occurs.

Prior to the first SET,AUXILIARY command, as well
as after a CLEAR,AUXILIARY command, no auxiliary
file is defined.

Disposition of the auxiliary output file is your
responsibility; the file 1is not printed by CID.
You should ensure that the file chosen for
auxiliary output is not one that will be read,
written, or otherwise manipulated by the program.

The E option must not be omitted on both the
standard and auxiliary output - files. Error
messages must be output to at least one of these
files.

60481400 ¢

SET,BREAKPOINT COMMAND

A breakpoint (see section 3) is established by
means of the SET,BREAKPOINT command (figure 5-19).
The 1location parameter in the SET,BREAKPOINT com-—
mand is an address. In BASIC, COBOL, and FORTRAN
programs compiled for use with CID, source language
symbols, such as line numbers, should -usually be
specified (see section 4).

Specifying a left bracket ([) in the SET,BREAKPOINT
command activates collect mode. When collect mode
is activated, you can enter a breakpoint body that
executes automatically when execution reaches the
breakpoint location. Breakpoint bodies are a form
of command sequence and are described in section 3.

When a breakpoint is set, CID assigns the
breakpoint a number in the range 1 through 16.
This breakpoint number, referred to in the form #n,
provides a convenient way of referring to break—
points in LIST or CLEAR commands. It is also used
in the breakpoint reporting message.

When a breakpoint is reached and the criteria as
determined by the frequency parameters are met,
then the breakpoint is honored.

SET,GROUP COMMAND

The SET,GROUP command (figure 5-20) establishes a
group. The opening left bracket is optiomal but
included in the syntax for compatibility with trap
and breakpoint SET commands with bodies. The
closing right bracket is required.

A group is a type of command sequence (see
section 3). Upon establishment of a group, a
number i1is assigned by CID. This group number,
referred to in the form #n, provides a convenient
way of referring to groups in the LIST or CLEAR
commands described in this section.

SET,HOME COMMAND
The SET,HOME command (figure 5-21) designates a

specific program module as the home program. The
home program is described in section 3.

5-9

{SET,BREAKPOINT
sB

Llocation

first 1
last infinity
step 1

first 1 through 262142
Last 1 through 262142

step 1 through 4095

the end of the list.

} ,location,Cfirst],Clast],Cstepl[[]

Central memory location. Only one breakpoint can be set at any one location.
first,last,step Frequency parameters. Breakpoint action occurs every step time that the breakpoint is
reached, beginning with the first time and not after the last time. (Last must be

greater or equal to first; step must be greater or equal to first and less than or
equal to last.) The frequency parameter defaults are as follows:

The frequency parameter ranges are as follows:

Commas must separate the positions of frequency parameters omitted from within the
List of frequency parameters; no commas are necessary when parameters are omitted from

r Optional; activates collect mode (see section 3).

Figure 5-19. SET,BREAKPOINT Command

{::T’GROUP} ,group—name [[]

sequence of CID commands

]

group—-name Name of group to be set

Figure 5-20. SET,GROUP Command

{:HET’HOHE } L,(p,s)1,CP.Iprogname
(p,s) Optional; number of overlay con-

taining program

progname Name of program to be designated
home program

Figure 5-21. SET,HOME Command

The command is useful 1f a series of references is
to be made to some program other than the current
program module. By designating the program module
to be referenced as the home program, such refer-
ences can be made in the implicit home program
form _n, as described in section 4.

5-10

-

If BASIC, COBOL, or FORTRAN CID commands are to be
used to reference source symbols not in the current
home program, then SET,HOME must first be entered
to change the home program designation to the one
in which the symbols occur.

When SET,HOME is executed, the program module
indicated is made the home program. The designated
program module can be in an overlay not currently
loaded. Issuing a SET,HOME command in this case,
however, would only be useful if SET,BREAKPOINT or
SET,TRAP commands specifying locations within such
a program were to be issued; all other references
to unloaded program locations are not allowed.

A designated program remains the home program until
it is changed either explicitly by the SET,HOME
command, or by a trap or breakpoint occurring in
some other program.

SET,INTERPRET COMMAND

The SET,INTERPRET command (figure 5-22) allows you
to explicitly control the use of interpret mode.
Interpret mode is turned on or off as indicated by
the command parameter. An informative message is
issued in each case. When interpret mode is turned
off, traps that depend on interpret mode do mnot
occur.

Interpret mode is also turned on when any RJ, XJ,
JUMP, STORE, FETCH, or INSTRUCTION trap is
established. If, after setting such traps, a
SET, INTERPRET,OFF or CLEAR INTERPRET command is
issued, the traps are rendered inoperative although
still defined. If a SET,INTERPRET,ON is subse-
quently issued, the traps become operative again.

60481400 D

{SET,INTPRET} {,ON }
SI »OFF

ON Turns interpret mode on

OFF Turns interpret mode off

Figure 5-22. SET,INTERPRET Command

SET,OUTPUT COMMAND

The SET,OUTPUT command (figure 5-23) allows you to
control the kinds of CID output that are written to
the CID standard output file. The options
designated in the option list determine the types
of output written to this file. Each - SET,OUTPUT
comnand supersedes any previous SET,OUTPUT command.

When the 1list is omitted, the default options are
E, W, D, and I.

1f the E option is omitted, error messages are
suppressed, response mode (see section 7) is not
entered when an error occurs, and erroneous
commands are skipped. 1In this case, an auxiliary
file must be defined with the E option specified.

If the W option is omitted, warning messages are
suppressed, response mode is not entered, and
commands which normally would result in warning
messages are executed. Trap and breakpoint report
messages are not suppressed when the I option is
omitted.

SET,TRAP COMMAND

Traps are established by the SET,TRAP command
(figure 5-24). The command indicates the type of
trap to be established; the types are shown in
table 5-5. Trap types are further described in
section 3. The SET,TRAP command also indicates the
scope of the trap. The way in which the scope is
indicated depends on the type of trap. For an
OVERLAY trap, the scope is a parenthesized pair of
overlay numbers. For all other trap types, the
scope is an address range. An execution address
range is a range of addresses in executable code
within which any event of the specified type is to
cause a trap. For FETCH and STORE, the address
range indicates not a section of executable code
but a section of data words within which any
fetches or stores are to be monitored. In other
words, if a fetch from or a store into any word in
the specified range is executed, a trap occurs. An
asterisk (*) indicates unrestricted scope; the
condition is trapped anywhere in the program.

When a trap is set, the trap is assigned a number
in the range 1 through 16. This trap number,
referred to in the form #n, provides a convenient
way of referring to traps in the LIST or CLEAR
commands described in this section. The trap
number is also used in the trap reporting message
described in section 3. A trap remains established
for the remainder of the debug session unless the
trap is redefined by another SET,TRAP command or
cleared by a CLEAR,TRAP command.

{SET »OUTPUT

SouT } Loption—List]

Error messages
Warning messages

Informative messages

- WO~ OELM

option-List List of zero or more codes arranged in any order, selected from the following:

CID output produced by command execution

Read command sequence (group or file) - when read
Body sequence — when it occurs (trap or breakpoint)
Terminal or standard input file echo.

List elements are not separated by commas or spaces.

Figure 5-23. SET,OUTPUT Command

60481400 D

5-11

ST

type

scope

{ser,mw

report Llevel

Trap type or abbreviation of trap type. Indicates condition causing suspension of
execution.

Portion of user field length to which trap is to apply. Must be in valid format for trap
An asterisk (*) indicates unrestricted scope.

‘type.

} stype,scopel,report Llevell[C]

Optional; specifies form in which location of trap is to be reported. The report Level
is one of the following:

L Line number (FORTRAN, BASIC, and COBOL). Compiler-assigned Line number, as shown
in source Listing. Default for FORTRAN, BASIC, and COBOL programs compiled in
debug mode.

P Program address. Default for programs other than FORTRAN, BASIC, and COBOL pro-
grams compiled in debug mode.

PR Procedure name (COBOL).

S Statement label (FORTRAN and BASIC).

C Optional; activates collect mode (section 3).
Figure 5-24. SET,TRAP Command
TABLE 5-5. TRAP TYPES
CID
ghort Trap Condition Scope Gets
orm Type‘ Control
W F ~ |
A ABORT Abnormal termination except operator Execution address range After
drop or kill
E END Normal program termination Execution address range After
F FETCHT Fetch from memory Fetch address range After
I INSTRUCTIONT Beginning of any machine instruction Execution address range Before
INT INTERRUPT User interrupt Execution address range After
J Jumpt Jump instruction other than return Execution address range Before
jump or exchange jump (if jump takes
place)
L LINE Beginning of an executable source line Execution address range Before
of a BASIC, COBOL, or FORTRAN program
compiled for use with CID
OVL OVERLAY Overlay load Overlay number After
PROC PROCEDURE Beginning of a procedure in a COBOL - Execution address range Before
program compiled for use with CID
ryt Return jump instruction entry and return Execution address range Before
S STORE* Store to memory Store address range After
XJT Central exchange jump Execution address range Before
_TThrns on interpret mode.
5-12 60481400 D

SET,VETO COMMAND

The SET,VETO command (figure 5-25) turns veto mode
on or off. The CLEAR,VETO command has the same
effect as SET,VETO,0FF. Veto mode is described in
section 7,

{SET,VETO} [,ON]
sV ,OFF

ON Turns veto mode on

OFF Turns veto mode off

Figure 5-25. SET,VETO Command

OTHER LANGUAGE-INDEPENDENT
COMMANDS

The following paragraphs describe other language-—
independent CID commands. The commands are listed
alphabetically.

DISPLAY COMMAND

The DISPLAY command (figure 5-26) displays the
contents of one or more central or extended memory

60481400 D

{DISPLAY

;format.
D

} sLocation [,format,count
tocation Address, address range specifica-
tion, or debug symbol.

format Indicates how the display is to be
presented. The default depends on
the information being displayed.

count Integer expression specifying the
number of locations to display; it
can be an expression containing
computable debug variables. The
default is 1.

Figure 5-26. DISPLAY Command

locations. This language—-independent DISPLAY
command is not the same as the COBOL CID DISPLAY
command described in sectiomn 6. To distinguish
this command from the COBOL CID DISPLAY command,
this command must be entered in short form or with
a comma following the command name when the home
program is a COBOL program compiled for use with
CID.

5-12.1/5-12.2 |}

This command displays memory words without regard
to data structures. If you are displaying
locations other than debug variables, you should
have an understanding of the data structures being
displayed when you use this command. Language-
dependent commands are generally more useful when
displaying values from BASIC, COBOL, and FORTRAN
programs compiled for use with CID.

If the location parameter is a memory address, the
contents of the number of words specified by the
count parameter beginning with that address are
displayed. If location is an address range
specification, then the contents of the entire
address range are displayed and the count is
ignored. If location is a debug variable, the
value of the debug variable is displayed.

Format codes are shown in table 5-6. The default
format for displaying debug variables is octal,
except for the following:

#p,#EA Symbolic address (A)
#HOME , #LINE , #PROC Character (C)

#BP, #TP, #GP, #INSL, Decimal integer (I)
#V1 through #V10,

#ERRCODE , #CPUERR

TABLE 5-6. DISPLAY FORMATS

Format Code Format Displayed

—

A Symbolic address

C Character data: that is,
Hollerith or string data

D Double-precision floating-
point

F Floating-point

I Signed 60-bit decimal integer

0 Unsigned 60-bit octal number,

indicated by the letter O

If the A format is specified, only the lower 18
bits of specified central memory locations or the
lower 24 bits of extended memory locations are used
as the address which is then displayed in symbolic
form.

The default format for the DISPLAY command is as
follows when the location parameter is expressed as
a variable name from a BASIC or FORTRAN program
compiled for use with CID:

I If the wvariable type is signed 60-bit
integer

C If the variable type is character
F If the variable type is floating-point

D If the variable type is double-precision

60481400 C

If the variable type is not signed 60-bit integer,
character, floating-point, or double-precision, the
default format is octal.

The default format for all other types of location
parameters (including locations in COBOL programs
compiled for use with CID) is octal.

DISPLAY must not reference locations in an unloaded
overlay or in CID itself.

Examples of the DISPLAY command are:

e ?DISPLAY,2
2=32323 23232 17125 01046

e 7DISPLAY,2...12,F
2=,35567145154957E+21 0.0 0.0 0.0 0.0 0.0 0.0
" +8 = 0.0 0.0 0.0

e ?DISPLAY,2,D
2=,355671451549568213826672074D+21

e ?DISPLAY, #P
#P=P.SUBL_23B -

e ?DISPLAY,#P,0
#P=021171

e ?DISPLAY, #HOME
#HOME=P .SUB1

ENTER COMMAND

The ENTER command. (figure 5-27) assigns a value to
one or more words in memory or to a debug
variable. You should have an understanding of the
data structures being changed before entering this
command when the location parameter is not a debug
variable.

{:"TER} ,value,locationLl count]
value Expression

Location Address or address range specifi-
cation other than program module
name

count Positive integer'expression

Figure 5-27. ENTER Command

If the location parameter is an address, the value
supplied is stored at the number of consecutive
words indicated by the count parameter beginning
with that address. The default for count is 1. If
location is an address range specification, then
the specified value is stored at all addresses in
the range and count is ignored.

ENTER cannot reference locations in an unloaded
overlay or in CID itself.

5-13

Examples of the ENTER command are:
e ENTER,0,C.BLKA 5

The value zero is entered at the sixth location
of common block BLKA. A default value of 1 is
used for count.

e ENTER,0,C.BLKA O...C.BLKA 3

Zeros are entered into the first four locatiomns
of BLKA.

e ENTER,#P,#V1
The value of #P is entered into #V1.
e ENTER,P.PROG, 14,C.BLKB 23

The address of the 15th location in PROG is
entered into the 24th word of BLKB.

e ENTER,!PROG 14,C.BLKB 0,24

The contents of the 15th location in PROG are
entered in the first 24 words of BLKB.

EXECUTE COMMAND

The EXECUTE command (figure 5-28) starts or resumes
program execution. Program execution is initiated
or resumed at the location indicated. If no
location is specified, execution is resumed at the
location where execution was suspended or is
initiated at the start of the program.

EXECUTE .

{EXEC } [,Llocation]

Location Optional; if given, must be an
address within a program module.
befault is the current location
#P.

Figure 5-28. EXECUTE Command

Care should be taken when you specify a location in
the EXECUTE command, because this action changes
the flow of program execution. When the EXECUTE
command is entered to start program execution at
the beginning of a debug session, the EXECUTE com—
mand should be entered with no parameters; if the
location parameter is specified when the EXECUTE
command is entered to start program execution,
program initialization does not take place.

The EXECUTE command with no parameters is not
allowed after an ABORT or END trap with no reprieve
code, or after reprieve code 1is completed. In
these cases, the only allowable form of the command
is EXECUTE, 1location, where location is other
than #P.

In cases where no current command sequence is
suspended, the GO command causes the same action as
EXECUTE.

5-14

GO COMMAND

The GO command (figure 5-29) causes an exit from
the current sequence or mode and a resumption of
suspended processing. A new location for
resumption of program execution can be specified
via the optional location parameter.

60C,location]

Location Optional; new location for resump-
tion of execution.

f Figure 5-29. GO Command

When issued from within a breakpoint or trap body,
GO causes resumption of program execution either at
the place where execution was suspended, or at the
location specified. In this case, action is
identical to the EXECUTE command. Care should be
taken when you specify a location, because this
action changes the flow of program execution.

When issued from within the body of a group or
file, GO causes an exit from that sequence and a
resumption of the process that was active when the
READ command that invoked the current sequence was
issued. If the previously active process was
itself a command sequence, control is transferred
to the command following the invoking READ com-—
mand. If the READ command was issued from the
terminal, interactive mode is resumed.

When issued in interactive mode as a result of a
PAUSE command within a command sequence, GO causes

a resumption of that suspended sequence at the
command following the PAUSE command.

When issued in interactive mode as a result of an
implicit PAUSE (for example, the start of the debug
session, or after a breakpoint or trap having no
body), GO causes a resumption of program
execution. In this case, action is identical to
the EXECUTE command. Care should be taken when you
specify the 1location in the GO command, because
this action changes the flow of program execution.
When the GO command is used at the start of a debug
session, the location should not be specified; if
the location is specified at the start of a debug
session, program initialization does not take place.

HELP COMMAND

The HELP command (figure 5-30) can provide immedi-
ate information about CID features or commands. It
is not a substitute for a reference manual, but
rather acts as an on-line summary that can be
accessed selectively. ,

HELP issued with no parameters or * lists a set
of permissible parameter values and a corresponding
subject category for each value. HELP,subject can
then be entered to get more detailed information
about the subject. For example, HELP,CMDS lists
the commands and gives a brief explanation of each.

60481400 C

'*
HELP [,subject

,command-name
* Default; displays subject
) index
subject Displays command index for

subject

command-name Displays information about
specified command

Figure 5-30. HELP Command

For more detailed information regarding a specific
command, HELP can be entered with the command name
as the parameter value.

JUMP COMMAND

The JUMP command (figure 5-31) transfers control to
a specific label within a command sequence.
Control can be transferred either forward or
backward.

JUMP, Label

label Location of a command as defined in
a LABEL Command

Figure 5-31. JUMP Command

The command sequence is searched for the label in a
forward direction from the position of the JUMP
command. The search continues until either the
label is found, or the end of the sequence or file
is found.

If the label is not found, the search continues at
the start of the sequence and proceeds in a forward
direction until either the label is found or the
same JUMP command is reached.

If the 1label is found, execution of commands
continues from that point in the command sequence.
If the label is not found, an error message is
issued and you are prompted for response.

For a label to be found by a JUMP command, the
labeled command must be the first command on a line.

No check is made for duplicate labels in a given
command sequence. Transfer of control is made to
the label that is encountered first.

In interactive mode, outside of command sequences,
jumps can only be made to the beginning of the line
in which the JUMP command is entered. In batch
mode, jumps within the standard input file DBUGIN
are permissible.

LABEL COMMAND

The LABEL command (figure 5-32) defines a label for
the location in the command sequence where the
LABEL statement occurs. JUMP commands appearing
elsewhere in the same command sequence can
reference the label.

LABEL, Label

label Character string not more than seven
characters in length and consisting
of any arrangement of letters and
digits

Figure 5-32. LABEL Command

Labels are local to the command sequence in which
they are defined, so the same label can be used in
many different command sequences without conflict.
No check is made for duplicate labels in a given
command sequence.

For a label to be found by a JUMP command, the
labeled command must be the first command on a line.
In interactive mode, a label is meaningful only to
JUMP commands that are in the same line.

MESSAGE COMMAND

The MESSAGE command (figure 5-33) allows a message
to be issued while executing a command sequence.
The message text supplied is issued to the standard
output file (usually the terminal).

MOVE COMMAND

The MOVE command (figure 5-34) assigns the values
contained at a source set of memory locations to a
destination set of locatioms. The source and
destination locations are specified as address
ranges or as single, beginning locations. The MOVE
command assigns words of data beginning and ending
at the addresses - specified without regard to the
data structures involved. You should have an
understanding of the data structures being changed
before entering this command.

MESSAGE, 'message text'

message text

tive occurrences of the character.

Any string of characters. The string can include ; and 1. The message text is delimited
by either a pair of apostrophes (') or by a pair of quotes (™). Quotes or apostrophes
identical to those used to delimit the text are indicated within the text by two consecu-

Figure 5-33.

60481400 C

MESSAGE Command

5-15

{:OVE} ,source,destinationl,count]

source Address expression or address
range specification other than
program name

destination Address expression or address
range specification other than
program name

count Integer -expression; default is
one

Figure 5-34. MOVE Command

This language—-independent MOVE command is not the
same as the COBOL CID MOVE command described in
section 6. To distinguish this command from the
COBOL CID MOVE command, this command should be
entered in short form or with a comma following the
command name when the home program is a COBOL
program compiled for use with CID,

The action taken when the MOVE command is executed
depends on whether either the source or destination
parameter is a range specification. If the source
or destination is a range specification, the count
parameter 1is ignored even if present and enough
words are moved from the source to fill the
destination range. If the source range is smaller
than the destination range, the words in the source
range are moved repeatedly (in the same order)
until the destination range is filled. If the
source range is larger than the destination range,
only as many words as are needed are moved.

If neither source nor destination is a range
specification, the count parameter determines the
number of words to be moved. The data in the
source is moved to destination, sourcet+l to
destination+l, and so forth, until source+{count-1)
is moved to destination+(count-1). The default
value of count is 1.

MOVE must not reference locations in an unloaded
overlay or in CID itself.

An example of the MOVE command is:

MOVE,C.BLKA 0...C.BLKA 2,C. 0...C._6
The first three words of common block BLKA are
moved repeatedly until values are sent to the first

seven locations of the unlabeled common block. The
destination;, when completed, contains the following:

.Location Value
c. 0 !C.BLKA 0
c._1 {C.BLKA 1
c. 2 {C.BLKA 2
c._3 !C.BLKA 0
C._4 !C.BLKA 1
C._5 !C.BLKA 2
Cc. 6 IC.BLKA 0

5-16

An example of the MOVE command where the

destination range is shorter than the source range
is:

MOVE,C.BLKA 0...C.BLKA 5,C. 0...C._3

Since the destination is only four words long, only
the first fourv words of BLKA are moved into the
first four words of the unlabeled common block.

If a count parameter is supplied in either of the
preceding examples, it is ignored.

An example of the MOVE command using the count
parameter is:

MOVE,C.BLKA 0,C._0,4

Here, neither the source (C.BLKA 0) nor the desti-
nation (C._0) is an address range specification;
the count parameter is wused and results are
identical to the previous example.

Another example of the MOVE command is:
MOVE,C.BLKA 0,C. O

The first word of BLKA is moved to the first word
of unlabeled common. Since no count is provided,
only one word is moved.

NULL COMMAND

The NULL command (figure 5-35) is a do-nothing com-
mand. That is, when executed, no action occurs.
Its main purpose is as a replacement command when
responding to an error, warning, or veto (see
section 7).

) {#ULL }

TThe short form of the NULL command is an
empty Line (or an empty area between semi-
colons).

Figure 5-35. NULL Command

PAUSE COMMAND

The PAUSE command (figure 5-36) is used within a
command sequence. to cause suspension of the
automatically executing command sequence and to
place the system in interactive mode so that CID
commands can be entered directly from the
terminal. Interactive mode is signaled by the
question mark prompt for terminal input.

On the occurrence of the first PAUSE command in a

sequence body of a trap or breakpoint, the
appropriate trap or breakpoint report is issued
prior to entering interactive mode.

60481400 C

PAUSEL, 'message-text']

message-text

tive occurrences of the character.

Any string of characters. The string can include ; and 1. The message text is delimited
by either a pair of apostrophes (') or by a pair of quotes ("), Quotes or apostrophes
identical to those used to delimit the text are indicated within the text by two consecu-

Figure 5-36.

If automatic mode of execution was initiated from
interactive mode by executing a group or file with
the READ command, then the PAUSE command does not
result in any automatic message being produced.

In any case where the reason for the PAUSE might
not be clear when it is executed, you should use
the second form of the command with a suitable
message text. The message text is issued after any
trap or breakpoint report, and immediately prior to
entering interactive mode.

The PAUSE command has no effect when it is executed

outside of a command sequence.

QUIT COMMAND

The QUIT command (figure 5-37) terminates a debug
session.

,NORMAL’
N
4
QuIT ”ABORT
SA
NORMAL or N Default; normal termination of
debug session occurs.
ABORT or A Abort termination of debug
session occurs.

Figure 5-37. QUIT Command

The current debug session is terminated; that is,
control is returned to the operating system to
process the next control statement. If the
parameter value supplied is NORMAL (or implied by
default), normal termination occurs.

Files used by BASIC, COBOL, and FORTRAN programs
are automatically closed by the QUIT ' command.
Files used by other programs are not automatically
closed unless a subroutine that closes the files
has entry point SYSEND and has been loaded with the
program.

If the parameter value supplied is .ABORT, an abort
type of termination occurs. In this case, system
action causes the message DEBUG ABORTED to be
ingerted into the dayfile. If CID is executed in
batch mode, then subsequent control statements in
the control statement section are skipped until an
EXIT statement or the end of the job is encount-
ered. If an EXIT control statement is encountered,
control statement execution then resumes with the
first statement following the EXIT statement.

60481400 C

PAUSE Command

READ COMMAND

The READ command (figure 5-38) 1is wused in the
following ways:

e To process CID commands stored on a file by
some facility not provided by CID itself (for
example, the editor)

® To reconstitute breakpoint, trap, and group
definitions previously saved on a file

® To invoke the command sequence of a group

file-name
’
READ {,group-name}
Name of file containing commands
to be executed

file—name

group-name Name of group to be executed

Figure 5-38. READ Command

When READ is executed, a search is made for a group
with the specified name. If a group is found, then

commands are read and executed from the group. If
there is no group with that name, a search is made
for a file with that name. If a file is found, the
file is rewound, commands are read and executed,
and the file remains at end-of-information. If no
such group or file is found, an error message is
issued and a response awaited.

A command sequence being read can itself contain a
READ command. READ commands can be nested; how-
ever, files or groups cannot be read recursively.
That is, the reading of a file or group must be
ended before it can be read again.

Before a file can be read, it must be assigned to
the job. This is accomplished through control
statements appropriate to the operating system
being used. These statements must be issued while
you are in system command mode, either prior to
entering CID, or upon issuing a SUSPEND command.

‘SKIPIF COMMAND

The SKIPIF command (figure 5-39) conditionally
skips commands when a specified relation is
satisfied. With SKIPIF, trap bodies can be written
which cause action. dependent on where the trap
occurred, or bodies can be made to act according to
the values of program or debug variables.

5-17

SKIPIF,valueq,relation,valuez
value; Integer expression

relation One of the following:

EQ Equal

. * NE Not equal
LT Less than
LE Less than or equal
GE Greater than or equal
6T Greater than

Figure 5-39. SKIPIF Command

The logical relationship is evaluated, and, if the
result is true, the next command in the command
sequence is skipped. If the relationship is false,
the next command in the command sequence is
executed. By using a JUMP following a SKIPIF, any
number of commands can be skipped.

STEP COMMAND

The STEP command (figure 5-40) initiates or resumes
program execution until a specified number of lines
or COBOL procedure names have been reached. CID
suspends program execution and issues the following
message:

*S type AT address

The address is a reference to the next linme or
instruction to be executed.

When stepping a number of lines, the STEP command

counts only lines in BASIC, COBOL, and FORTRAN
programs compiled for use with CID. Nomnexecutable
lines and lines that are continued from a previous
line are not counted. COBOL procedure—name lines
are counted.

When stepping a number of procedures, the STEP
command counts only procedure-name lines in COBOL
programs compiled for use with CID.

Whenever you gain control before a STEP command has
completed its action, the STEP command is
discontinued. For example, if you 1issue the
command :

STEP, 5,LINES

and a Dbreakpoint occurs after two lines are
executed, you gain control at the breakpoint, and
the STEP command is discontinued.

If a STEP command causes you to gain control at the
same time as another event causes you to gain
control, the other event gives you control, and the
STEP command is discontinued.

At a breakpoint or trap where a command sequence is
executed and you do not gain control, the STEP
command remains in effect. If, however, the
command sequence causes you to gain control (as the
result of a PAUSE command, for example), then the
STEP command is discontinued.

If you gain control as the result of an error or
warning in a command sequence, the STEP command is
not discontinued. When an error is reported, you
can only respond to that error; you do not have
general control.

{ STEP

s } ,In],Ltypel, [scopel

Less than 536870911.

procedure-names are to be stepped.

locationq...locationp

P.progname

n Number of Lines or procedure names counted before execution is suspended. This value must be

type LINE, LINES, or L if lines are to be stepped. PROCEDURE, PROCEDURES, PROC, PROCS, or PR if

scope Address range indicating within which area program Lines or procedure names are to be counted.
The scope parameter can take one of the following forms:
* : ALl Llines or procedure names are to be counted.

ALl lines in the specified address range are to be counted.

ALl Llines in the specified program are to be counted.

In this command, commas must separate the positions of parameters omitted from the middle of the Llist.
No commas are necessary when parameters are omitted from the end of the List.

Defaults are as follows: If no parameters are entered, the previous STEP command is reexecuted. (If no
previous STEP command has been executed during the debug session, STEP,1,LINE,* is executed.) If at
least one parameter is entered, the defaults are n=1, type=LINE, and scope=*.

Figure 5-40.

5-18

STEP Command

60481400 C

SUSPEND COMMAND

The SUSPEND command (figure 5-41) provides a means
of leaving CID and returning to the operating
system command mode. With SUSPEND, the option is
open to return later to CID with the program,
environment, and status restored to what it was
when the SUSPEND command was issued. You can use
this capability to edit command sequences (see
section 3).

SUSPENDL, fi Le-name]

file-name Local file on which the current
CID environment is saved. The
default name of ZZZZZDS is used
if no file name is specified.

Figure 5-41. SUSPEND Command

The current CID environment (breakpoint, trap, and
group definition), current status (interpret and
veto mode settings, output options, and home
program designation), debug variables and tables,
as well as the program, are saved on a local file.
A return is then made to the operating system
command mode.

A warning message is issued if a previous version
of the file saved by SUSPEND exists. This would be
the case if a SUSPEND issued earlier in the same
terminal session had not been resumed. A positive
response to the warning message results in
execution of the new SUSPEND which overwrites the
file created by the prior SUSPEND, thus making
resumption from the prior suspension impossible.

No closing or saving of your files is performed
when the SUSPEND command is executed. Note that
unclosed files might become unusable or incomplete
if the debug session is not resumed.

The CID status, CID environment, and program are
restored when the DEBUG(RESUME) control statement
is executed. Resuming the debug session does not
restore the position and status of your program
files to their state at CID suspension. Thus,
while the debug session is suspended, operations
should not be performed that would alter the
position or status of these files.

The suspended debug session is saved on a local
file. If you want to resume the session in a
future terminal session or job, you must make the
local file permanent.

60481400 C

TRACEBACK COMMAND

The TRACEBACK command (figure 5-42) provides, in
concise form, a high level summary of program flow
leading to the most recent execution of the program
module specified or implied.

TRACEBACK [

,E.entrypoint
,P.progname

no parameter Home program is designated

program.
entrypoint Program containing entry point
is designated program.
progname Named program is designated

program.

Figure S5-42. TRACEBACK Command

The TRACEBACK command produces a list of program
module names, beginning with the designated program
and progressing backward through successive
levels. At each level, it displays the name of the
program that last called that module and the
location within the module where the call took
place.

If the program specified in the TRACEBACK command
has not been called during the debug session, CID
issues the error message PROGRAM progname NOT
CALLED, where progname is the name of the program.
If a program module contains more than one entry

point, a warning message is issued and the first
entry point 1is chosen if the response is

affirmative (YES, OK, or ACCEPT).
Examples of the TRACEBACK command are:
e ? TRACEBACK

P.SUB CALLED FROM P.TEST 217B

e ? TRACEBACK,E.ABC
E.ABC CALLED FROM P.WXYZ 217B

o ? TRACEBACK,MONTH
P.MONTH CALLED FROM P.FORMAT 13B
P.FORMAT CALLED FROM P.DATE 71B
P.DATE CALLED FROM P.PROGA 152B

5-19

LANGUAGE-DEPENDENT COMMANDS 6

Language-dependent CID commands are nearly
identical in form and action to statements used in
the programming language of the program . being
debugged. These commands are provided by CID so
that you can debug programs without having to be
familiar with compiler-produced data structures and
object code.

Language—-dependent commands are available only when
the home program is a BASIC, COBOL, or FORTRAN
program compiled for wuse with CID. Different
commands are available for debugging programs
written in different languages. You cannot enter
language—dependent commands intended for one
programming language when the home program is
written in a different programming language.

The syntax of a language-dependent command depends
on the command itself. Normally, each line entered
from the terminal is considered a complete
command. More than one command can be entered on a
line if a semicolon separates the commands (two
semicolons must be used after the BASIC PRINT
command) . Language~dependent commands can be
entered on the same line with language-independent
commands .

Commands cannot be continued across lines. The
maximum length of a command 1line is 150
characters. Characters beyond 150 are ignored.
CID can be used from a NOS ASCII mode terminal.
The command 1line is 1limited to a maximum of 75
12-bit escape code ASCII characters. CID can be
used to debug ASCII mode BASIC programs under NOS.
NOS/BE, however, does not support input or output
of lowercase ASCII characters with CID.

BASIC CID COMMANDS

Five CID commands are provided exclusively for
debugging BASIC programs. They are GOTO, IF, LET,
MAT PRINT, and PRINT. These commands have the same
syntax and function as equivalent BASIC statements
except for the following restrictions (and those
noted in the command descriptions):

e Arithmetic or string expressions cannot refer
to system- or user-defined functions.

® Arithmetic expressions cannot contain the
exponentiation operation " or **,

® Multiple commands can appear on the same line
if they are separated by semicolons; however,
two semicolons are required to separate a PRINT
or MAT PRINT command from following commands.

Subscript expressions and the substring notation
are allowed in BASIC CID commands.

The language-independent DISPLAY, ENTER, MOVE, and
SKIPIF commands should not in general be used with
BASIC program data; the corresponding BASIC
commands should be used instead. ENTER and MOVE
must not be used with BASIC string variables.

60481400 C

The main advantage of the BASIC CID commands, apart
from their familiarity to BASIC programmers, is
that they provide automatic output formatting
(PRINT) or referencing by variable name (LET and
IF).

Expressions used with these commands are used as a
value and not as an address. They follow the
syntax and: operator precedence rules of BASIC
expressions, except that function references and
exponentiation are not allowed. Variables and line
numbers specified in the BASIC CID commands must be
in the home program.

GOTO COMMAND

The GOTO command (figure 6-1) is used to resume
program execution at a designated 1line. Care
should be taken when you enter this command,
because it changes the flow of program execution.
You should not wuse this command to initiate
execution at the beginning of a debug session,
because program initialization will not take place.

60TO0 line-number

Line-number An integer corresponding to a
Line number in the home program

Figure 6-1. GOTO Command

IF COMMAND

The IF command (figure 6-2) is used to control the
selection of CID commands based on a comparison of
program variables or computed values. The logical
operators AND, OR, and NOT are supported. They can
be used to connect simple relational expressions.
IF THEN ELSE is not supported.

Variables used in the expressions must exist in the
program. Expressions are evaluated and compared
according to BASIC rules. If the specified rela-
tion is true, the CID command is executed.- If the
relation is false, the CID command is skipped.

IF relexp THEN command

relexp Simple or compound relational
expression

command CID command to be executed if
8 expression is true

Figure 6-2. IF Command

Examples of the IF command are:
® IF A>=5000 THEN LET A=5000

e IF A$<OB$ THEN GO

e IF A(I,3)=B+C/12.3 THEN PAUSE

® IF A$<=B$(I:3) AND A$="YES" THEN GOTO 300

LET COMMAND

The LET command (figure 6-3) is used to assign a
value to a program variable. The variable refer-
enced must exist in the BASIC program being
debugged. The expression can be assigned to only
one variable. All string and arithmetic operators
except exponentiation are supported.

- [LET] numeric-variable = arithmetic-expression

[LET] string-variable = string-expression

Figure 6-3. LET Command

Examples of the LET command are:
® LET A=AHi5

e LET Z=A

e LET BS(3,K)-A$+"ABC"

MAT PRINT COMMAND

The MAT PRINT command (figure 6—4) is used to print
one—, two—, or three-dimensional arrays.

MAT PRINT array-list

array-list List of one or more arrays
separated by commas or semicolon

Figure 6~4. MAT PRINT Command

Arrays listed in the array list must exist in the
program. The subscripts furthest to the right in
the dimension statement vary and print more rapidly
than the other subscripts in the array list.

Elements of the array are printed in row order with
spacing between items controlled by the comma or
semicolon as it is for the PRINT command. A blank
line 1is output after each row. For a three-
dimensional array, each plane is printed in row
order. Two blank lines separate one plane from
another. An extra blank 1line is output between
matrices.

The MAT PRINT command is the only mechanism
available for printing an entire array.

Two semicolons in succession separate MAT PRINT
from the next command on the line.

; 6-2

Assuming the base set in the OPTION statement is
one, a 2x2 array named A is printed as follows when
the MAT PRINT is executed:

A(1,1) AC1,2)
A(2,1) A(2,2)

A 2x2x2 array named A is printed as follows:

A(1,1,1) A(1,1,2)
A(1,2,1) A(1,2,2)
A(2,1,1) A(2,1,2)
A(2,2,1) A(2,2,2)

The OPTION statement is described in the BASIC
reference manual.

PRINT COMMAND

The PRINT command (figure 6-5) is used to print
values of program variables or expressions.
Neither the TAB function nor the capability to
print a partial line is supported. Any trailing
comma is ignored. List elements can be separated
by commas or single semicolons. Two semicolons in
succession separate a PRINT command from the next
command on the same line.

PRINT output-list

output-list Any number of arithmetic or
string expressions separated by
commas or semicolons

Figure 6~5. PRINT Command

Variables in the output 1list must exist in the
program. A comma separating expressions causes
spacing to the mnext 15-column print zone; a
semicolon causes no spacing.

Examples of the PRINT command are:
e PRINT "THE VALUE OF A IS"; A

® PRINT A,A*A,A%A*A+13,J,3+B(17,J)

COBOL CID COMMANDS

Four special .commands are provided exclusively for
debugging COBOL programs. The four special COBOL
CID commands are DISPLAY, GO TO, MOVE, and SET.
The COBOL CID commands are similar in syntax and
action to the standard COBOL statements having the
same names. A COBOL CID command can be terminated
by a period; however, the period is unnecessary. A
semicolon must separate commands entered on the
same line.

The COBOL CID commands described in this section
have the same names as the language—-independent
DISPLAY, GO, MOVE, and SET commands described in
section 5. However, in action, the commands
produce completely different results. To avoid
ambiguities when the home program is a COBOL
program compiled for use with CID, you should enter

60481400 C

language-independent commands _ (described in
section 5) in short form or with a comma following
the name of the command. CID assumes any ambiguous
command is a COBOL CID command.

The COBOL CID commands allow you to examine and
change COBOL data items in a way identical to
writing such commands inside a COBOL program. Data
items and procedures are referenced just as within
a COBOL program. The COBOL CID commands described
in this section largely preclude the need for using
the language-independent DISPLAY, ENTER, and MOVE
commands described in .section 5; however, the
following restrictions apply to the COBOL CID
commands described in this section:

® Only data items declared in the home program
can be referenced in COBOL CID commands.

® Debug variables cannot be referenced by the
COBOL CID commands.

You can use COBOL CID commands to reference data
items outside the current home program by changing
the designation of the home program. (The SET,HOME
command changes home program designation.) Data
items from more than one program cannot be output
by a single COBOL CID DISPLAY command, nor can data
be moved from one module to another with a COBOL
CID MOVE or SET command.

Other considerations regarding COBOL CID commands
are as follows:

® No computations, other than expressions in
reference modifiers, are permitted with COBOL
data items in the COBOL CID commands.

® Reference modification 1is permitted in COBOL

CID commands. Expressions and identifiers are
permitted in reference modifiers in COBOL CID

commands .

® Use of indexes is permitted in COBOL CID
commands; however, CID does not detect use of
an index name outside of the data items for
which it was defined.

® Only quotation marks (") can be used to delimit
nonnumeric literals, even if the source program
contains the QUOTE IS APOSTROPHE clause in the
SPECIAL-NAMES paragraph.

e COBOL source statement column and area rules do
not apply to CID commands. COBOL CID commands
can be entered at the beginning of the line.

The following paragraphs describe the COBOL CID
commands .

DISPLAY COMMAND

The DISPLAY command (figure 6-6) displays the
values of literals and data items. The values are
displayed in the same format produced by a COBOL
DISPLAY statement. The UPON and WITH NO ADVANCING
phrases must not be used in the DISPLAY command.

60481400 C

DISPLAY output-List

output-list List of Literals and identifiers
to be displayed

Figure 6-6. DISPLAY Command

The ANSI=NOEDIT and ANSI=AUDIT options in the
COBOL5 control statement do not affect the output
caused by the COBOL CID DISPLAY command. Numeric
data items are always edited.

If the DECIMAL POINT IS COMMA clause is given in
the SPECIAL NAMES paragraph of the COBOL source
program, output from the DISPLAY command wuses a
comma for the decimal point. Otherwise, a period
is output as the decimal point.

Examples of the DISPLAY command are:

e DISPLAY I, AMOUNT-PAID, ID-CODE(2:5)

® DISPLAY "#*** TOTAL VALUE #***%% ' TOTAL

® DISPLAY TOTALS OF SUMS OF REPORTS

GO TO COMMAND

The GO TO command (figure 6-7) resumes program
execution at the beginning of a paragraph or
section. The DEPENDING ON phrase must not be used
with the GOTO command.

G0 [TO0] place

place Name of COBOL procedure where execution
is to resume

Figure 6-7. GO TO Command

The GO TO command must not be used to initiate
program execution at the beginning of a debug
session because program initialization will not
take place. The language—independent GO command,
the EXECUTE command, or the STEP command should be
specified to initiate execution. These commands
are described in section 5. Care should also be
taken when you enter the GO TO command, because it
changes the flow of program execution.

Examples of the GO TO command are:
® GO TO CALC-RANGE

Causes execution to resume at the procedure
CALC-RANGE in the home program.

® GO CALC-COURSE OF DEVELOP-ALTERNATE

Causes execution to resume at the CALC-COURSE
paragraph in the DEVELOP-ALTERNATE section in
the home program.

6-3

MOVE COMMAND
The MOVE command (figure 6-8) changes the value of
a data item. This command is similar to the COBOL
MOVE statement except as follows:

e Allowable types of sending and receiving items
are restricted.

® Only one receiving item is permitted.

® MOVE CORRESPONDING is not allowed.

MOVE value TO data-item
value Literal or identifier

data-item Identifier of data item to receive
value

Figure 6-8. MOVE Command

Restrictions on the types of sending and receiving
items in the MOVE command are as follows:

® The sending and receiving items must be
alphabetic, alphanumeric, numeric (other than
COMP-1 or COMP-4), or group items. Edited
items can be specified; however, a warning
message is 1issued, and no editing takes place
when the value is moved.

® If either the sending or receiving item is
COMP-2, both items must be COMP-2.

® The receiving item must not be a Report Section
item.

® The sending item must not be a figurative
constant.

Allowable sending and receiving items are shown in
table 6-1.

Examples of the MOVE command are:
e MOVE 57 TO SCORE(1)

Gives the value 57 to the first member of the
table SCORE.

e MOVE "B" TO GRADE OF STUDENT-A

Gives the value "B" to data item GRADE in the
group item STUDENT-A.

e MOVE PERCENTAGE TO SCORE (1)

Gives the value of PERCENTAGE to the first
member of the table SCORE.

SET COMMAND

The SET command sets the value of an index or data
item. The SET command has two formats.

Format 1 SET Command

The format 1 SET command (figure 6-9) sets an index
or data item to a specified value.

Not all combinations of name types and value types
are allowed in the format 1 SET command. Allowable
combinations of name types and - value types are
indicated in table 6-2.

SET name TO value

name Index name or identifier to be set to
value

value Integer, identifier, or index name

Figure 6-9. Format 1 SET Command

TABLE 6-1. ALLOWABLE MOVE COMMAND SENDING AND RECEIVING ITEMS

Receiving Item
Sending Item
Group Alphabetic Alphanumeric Numeric COMP-2

Group YesT Yes Yes Yes No
Alphabetic YesT Yes Yes No No
Alphanumeric YesT Yes Yes Yes No
Numeric YesT No Yes Yes No
COMP~-2 No No No No Yes

TCID issues a warning message before this kind of move takes place.

6-4

60481400 C

TABLE 6-2. ALLOWED FORMAT 1 SET
COMMAND OPERATIONS

Name
Integer Index Data
Value Data Item Index Name | Item

Integer literal No Yes No
Integer data No - | Yes No
item

Index name Yes Yes Yes
Index data item No Yes Yes

An example of the format 1 SET command is:
SET INDEX-A TO 13

This command sets the index INDEX-A to the value 13.

Format 2 SET Command

The format 2 SET command (figure 6-10) increments
or decrements the value of the index specified.

SET name UP BY amount
SET name DOWN BY amount

name Index name to be set up or down by the
amount

amount Integer or identifier of an elementary
numeric data item

Figure 6-10. Format 2 SET Command

The UP BY clause causes the SET command to add the
amount to the named index; the DOWN BY clause
causes the SET command to subtract the amount from
the named index.
Examples of the format 2 SET command are:
® SET INDEX-A DOWN BY 1

Subtracts 1 from INDEX-A.
e SET INDEX-B UP BY 5

Adds 5 to INDEX-B.

FORTRAN CID COMMANDS

Four special CID commands are provided exclusively
for debugging FORTRAN programs. They are
assignment, GOTO, IF, and PRINT. They are similar
in syntax and action to the standard FORTRAN
statements having the same names. These commands

60481400 C

allow you to examine, change, and test FORTRAN

variables in a way identical to writing such
commands inside a FORTRAN program itself. Sub-
scripted variables and substrings are referenced
just as within a FORTRAN program. The FORTRAN CID
commands largely preclude the need for using
DISPLAY, ENTER, MOVE, and SKIPIF commands except
for the following restrictions:

® FORTRAN CID commands do not allow qualification
of variables; only variables declared in the
home program can be referenced.

® FORTRAN CID commands cannot reference debug
variables.

The SET,HOME command can be used to change the home
program as required to overcome the first restric-
tion. However, variables from more than one
program cannot be output by a single PRINT state-
ment, nor can data be moved from one module to
another with an assignment statement. References
to common block variables declared in the home
program module can, however, appear in the same
statement with home program variables. The scope
of FORTRAN variables under CID is identical to that
in FORTRAN; they are confined to the subprograms in
which they are declared.

The main advantage of these commands, apart from
their familiarity to FORTRAN programmers, is that
they provide automatic output formatting (PRINT) or
automatic type conversion (assignment and IF) of
the referenced variables.

Expressions used with these commands are inter-
preted as values and not as addresses. They follow
the syntax and operator precedence rules of FORTRAN
expressions, except that function references and
exponentiation are not allowed.

ASSIGNMENT COMMAND

Assignment commands (figure 6-11) are identical in
form and action to FORTRAN assignment statements.
Any valid FORTRAN expression is supported, except
those involving function references or exponen—
tiation. Only one variable can change its value as
a result of the assignment command.

simple variable = FORTRAN expression
subscripted variable = FORTRAN expression

Figure 6-11. Assignment Command

Examples of the assignment command are:
e A=B

e VECT(3)=ARRAY(3,7)

® VOL=(4/3)*3.14159*%R*R*R
® NAME=FIRST//LAST (FORTRAN 5 only)

e LINE(3:9)=BLANKS(1:6) (FORTRAN 5 only)

GOTO COMMAND

The GOTO command (figure 6-12) resumes program
execution at the specified statement. Care should
be taken when you enter this command, because it
changes the flow of program execution. You should
not use this command to initiate program execution
at the beginning of a debug session, because
program initialization will not take place.

60TO statement-label

statement—Label Integer corresponding to
statement number in home
program of statement where
execution is to begin. The:
location must be in the home
program.

Figure 6-12. 60TO Command

IF COMMAND

The IF command (figure 6-13) is identical in form
and action to the FORTRAN logical IF statement.

IF (logical expression) command

Figure 6-13. IF Command

The IF command executes the consequent command if
the logical expression is true. The logical ex-

pression can be any FORTRAN logical expression not
involving function references or exponentiation.

The consequent CID command can be any command.
Examples of the IF command are:

e IF (X .EQ. Y) PRINT *,GLOP+GLIP

e IF (STAT(1:2) .NE. "OK”) PAUSE

NOTE

Character relational expressions are evalu-
ated according to the current collation
weight table. The FORTRAN 5 CS=FIXED
collation option is never used even if the
program being debugged is currently using
that option.

- 6~6

PRINT COMMAND

The PRINT command (figure 6-14) 1is identical in
form and action to the FORTRAN list-directed PRINT
statement; output from this command is sent to the
CID standard output file. The PRINT command
formats each list element according to its type.

PRINT *_,output-list

List elements are separated by commas and can
include any of the following:

® Simple variable
® Subscripted variable
e Constant

e Expression not involving exponentiation or
functions

o Implied DO Llist enclosed in parentheses
(same as in FORTRAN input/output Llist)

o Substrings (FORTRAN 5 only)
e Array name

® Character variables and expressions
(FORTRAN 5 only)

Figure 6-14. PRINT Command

Examples of the PRINT command are:

e PRINT *,1,B(2,7),TOTAL/UNITS

e PRINT *,((MATRIX(I,J),I=1,3),J=1,4)
e PRINT *,(VECTOR(I),I=1,3)
® PRINT *,A(2:5),CHAR//LINE (FORTRAN 5 only)
e PRINT * ,NAME

As in FORTRAN itself, there is no conflict between
an implied DO variable and a variable in the home
program having the same name.

An array declared with an upper bound of asterisk
must be referenced as a subscripted variable in the
print command. A character variable declared with
a length of asterisk must be referenced with
substring notation.

60481400 C

ERROR, WARNING, VETO MODE, AND ~ 7
INTERRUPT PROCESSING

This section describes four conditions in which
execution of CID commands is suspended and control
is given to you to respond to the encountered
condition. The conditions are errors, warnings,
veto mode, and interrupts. .Possible responses to
the conditions are described.

This section describes processing of the conditions
when you are using CID interactively. For batch
processing differences, see appendix E.

ERROR PROCESSING

If any CID command cannot be successfully executed,
an error message is issued and the system is placed
in error response mode. 1In this temporary inter-
active mode, the system awaits an appropriate
response before dealing with the error situationm.

If the command in error was issued in interactive
command mode, then the error message consists
simply of *ERROR-, followed by the error text on
the same line.

An example of the occurrence of an error is:

? ENTER 100000 *FL
*ERROR-INVALID PARAMETER TYPE *FL
?

If the error occurs in a command sequence (such as
a breakpoint, trap, or group body) or in a group of

commands on one line other than as the first
command, the command in error is displayed. The
display includes any delimiter following the
command. This character, if present, should be
checked for a left or right bracket, indicating,
respectively, the start or end of a collected
sequence.

An example of an error occurring in a line sequence
is:

? DISPLAY,#P;ENTER,100,#FL
#P=P.SUBL 1738
*CMD - (ENTER,100,#FL)
*ERROR-INVALID PARAMETER TYPE #FL
?

A complete 1list of error messages can be found in
appendix B. Responses you can make to error
messages are described later in this section.

WARNING PROCESSING

If a CID command might have unexpected results, a
warning is issued. For example, attempted
execution of the SET,BREAKPOINT command results in
a warning message if a breakpoint already exists at
the location given, or if the location is an entry
point but was not given as such.

60481400 C

After issuing the warning message, the system is
placed ' in warning response mode, a temporary
interactive mode. Processing is suspended until
you respond to the message.

Warnings are reported in the same manner as errors,
except that the message text begins with *WARN-
instead of *ERROR-, and CID prompts you with OK?
rather than just ?.

A complete list of warning messages can be found in
appendix B. Responses you can make to warnings are
described later in this section.

VETO MODE PROCESSING

Veto mode provides a method of command sequence
operation that combines the automatic and
interactive modes. When veto mode is on, CID
displays each command in a command sequence
immediately prior to execution of the command.

CID then gives you temporary control, and issues
the prompt OK?. You can choose to allow the
current command to be executed, skipped (vetoed),
or replaced by one or more supplied commands.
Other options allow the current line or remainder
of the current sequence to be omitted, or allow
veto mode to be inhibited for the remainder of the
current line or current command sequence.

On the same response line, you can also supply
additional commands to be executed prior to
resumption of the command sequence. These addi-
tional commands are not subject to veto. Responses
you can make to the OK? prompt in veto mode are
described later in this section.

The SET,VETO and CLEAR,VETO commands described in
section 5 turn veto mode on and off. Veto mode is
off until turned on by the SET,VETO command.

INTERRUPT PROCESSING

You can obtain interactive CID control by issuing a
terminal interrupt (see interrupt in the glossary,
appendix C, for a description of how to issue a
terminal interrupt). If your program is executing
when the issued interrupt is detected, an INTERRUPT
trap occurs, as described in section 3. However,
if a command sequence is executing when the inter-
rupt is detected, then a halt in execution of the
command sequence occurs. Normally the halt occurs
between CID commands. However, for some commands
that take lists as parameters, interruption of the
command occurs after the current list element is
processed; for commands that print more than one
line of output, interruption occurs after the
current line is printed.

An interrupt can also be detected when CID is in
collect mode. CID can be in collect mode when you
are creating a command sequence or when an
executing command sequence is creating another
command sequence (a command sequence can create
another command sequence, for example, by setting a
trap with a trap body). Collect mode is described
in section 3.

If CID is in collect mode when the terminal
interrupt is detected, the following message is
issued:

*IN COLLECT MODE, LEVEL n

This message informs you that CID is in collect
mode, where n is an integer indicating the number
of levels of collect mode; that is, the number of
right brackets that must be entered to terminate
collect mode. (If n=1, the level number is omitted
from the message.)

If the terminal interrupt 1is detected while you
already have control, the interrupt is ignored and
the following informative message is issued:

*INTERRUPT IGNORED

Responses you can make to interrupts are described
later in this section.

ERROR, WARNING, VETO MODE,
AND INTERRUPT RESPONSES

Whenever you are prompted for a response as the
result of an error, warning, veto, or interrupt,
CID is put in response mode and you can respond in
one of three ways:

° Format 1:
Command Line

You can enter any command or set of commands
separated by semicolons. These commands are
executed in place of the command that caused
the error, warning, or veto; in the case of an
interrupt, they are additional commands
executed at the point in the original command
sequence where the interrupt was recognized.
Unless one of the replacement commands causes
control to go elsewhere (for example, GO,
EXECUTE, JUMP, or SKIPIF), control returns to
the next command in the original sequence after
all commands in the response are processed. In
response to an error, warning, or veto, the
NULL command (NULL or just semicolon) is a
valid reply that effectively skips the command
in question.

If you enter a PAUSE command in response to an
error, warning, interrupt, or veto, the command
sequence is suspended, and you can enter
several command lines from the terminal. You
can resume execution of the sequence by
entering the GO command or resume execution of
the program by entering the EXECUTE command.

7-2

° Format 2:
Response keyword[,qualifier]

The response keyword is a positive keyword
(ACCEPT, YES, or OK) or a negative keyword
(REJECT, NO, or VETO); the qualifier, if
present, is LINE or SEQ. Each positive keyword
has the same effect as any other positive
keyword, and each negative keyword has the same
effect as any other negative keyword. The
effects of the response keywords and their
qualifiers are shown in table 7-1.

e Format 3:
Response keyword[,qualifier];command line

This combination response responds to the
condition as specified by the keyword and then
inserts the new command line at the current
position in the original sequence. It provides
the capability to accept a warning or veto and
insert some new commands as well.

Qualified negative keywords such as REJECT,LINE
and VETO,SEQ can be used in these combination
results; they are not very useful, however,
since the new commands are treated as if they
existed in the original line and are
~
consequently skipped. :

If a response line containing multiple commands is
interrupted, or if any of the commands in the
response lime causes an error or warning prompt,
the remaining commands in the response line are
executed after processing of the inserted response
sequence. However, if the total number of pending
command sequences is 16, the last response sequence
is discarded; a message to this effect is issued.

Commands entered in a response line are not subject
to veto.

A response keyword, if present at all, must be
first on the response 1line; otherwise, it is
diagnosed as an illegal command. If a respomse
keyword is encountered in other than a response
input line, it is diagnosed as an illegal command.

ERROR RESPONSES

Examples of error responses are shown in table 7-2.

WARNING RESPONSES

Examples of warning responses are shown in
table 7-3.

VETO MODE RESPONSES

Examples of response lines while in veto mode are
shown in table 7-4.

INTERRUPT RESPONSES

The most useful responses to an interrupt occurring
when not in collect mode are shown in table 7-5.

60481400 D

TABIE 7-1.

RESPONSE KEYWORD ACTIONS

Response

Condition

Error (?)

Warning (OK?)

Veto (OK?)

Interrupt (?)

Pos

(ACCEPT, OK, YES) '

Pos, LINE

Pos, SEQ

Neg
(REJECT, VETO, NO)

Neg, LINE

Neg, SEQ

Acknowledge the error
and return to the
original sequence;
that is, skip the bad
command (same as re-—
sponding with NULL
command) .

Same as Pos. Not
possible to inhibit
error processing for
rest of line.

Same as Pos. Not
possible to inhibit
error processing for
the rest of the cur-
rent sequence.

Same as Pos. The bad
command 1is rejected.

Reject current com—
mand and all others
on the line it came
from; that is, skip
to the next line of
commands. (This
effect cannot be sim-
ulated by a replace-
ment command.)

Reject current com-
mand and all others
in this sequence
(same as responding
with GO command).

Execute the command.

Same as Pos.

Same as Pos.

Do not execute the
current command.
Discard it and re-
turn to the original
sequence to process
next command (same
as responding with
NULL command).

Same as for error
case.

Same as for error
case.

Execute the command.

Execute current com-
mand and all other
commands on the cur-
rent line; that is,
inhibit veto until a
new line of commands
is encountered.

Execute current com-—
mand and inhibit veto
for the remainder of
this sequence. Rein-
state veto when the
current sequence is
complete.

Do not execute cur-
rent command. Dis-
card it and return to
the original sequence
for next command
(same as responding
with NULL command).

Same as for error
case. Veto is still
in effect when next
line of commands is
processed.

Same as for error
case. Veto is still
in effect when com—
mands in sequence
that invoked this
one are processed.

Acknowledge interrupt
and return to origi-
nal sequence (same as
responding with NULL
command) .

Same as Pos.

Same as Pos.

Same as Pos.

Same as for error

case.

Same as for error
case.

60481400 C

7-3

TABLE 7-2. ERROR RESPONSE EXAMPLES

Response Action
OK Skip the current command.
NO Skip the current command.
NULL Skip the current command.
H Skip the current command.
HELP , SYNTAX; PAUSE Replace the command with HELP,SYNTAX, then enter interactive input mode. If GO is
issued later, the command sequence is resumed.
REJECT,LINE Reject the current command and all others on the same line that are still unprocessed.
VETO, SEQ Terminate the current command sequence.
GO Same as VETO,SEQ.
TABLE 7-3. WARNING RESPONSE EXAMPLES TABLE 7-5. INTERRUPT RESPONSE EXAMPLES
Response Action Response Action
OK Execute the current command. PAUSE Enter interactive mode. If GO is
later issued, the command
NO Reject the current command. sequence is resumed.
NULL or ; Reject the current command. OK; PAUSE Same as PAUSE.
REJECT,LINE | Reject the current command and all
others on the same line that are
still unprocessed.
REJECT,SEQ Reject the current command and the If an interrupt is detected while CID is in collect
rest of this sequence. mode, and the interrupt is not ignored (that is, if
the interrupt occurs while an executing command
GO Same as REJECT,SEQ. sequence is creating another command sequence), you
can choose one of the following actioms:
TABLE 7-4. VETO MODE RESPONSE EXAMPLES ® Resume collection of the command sequence.
You can immediately resume collection of the
Response Action current command sequence only by entering one
of the following responses:
OK Execute the current command.
ACCEPT
NO Skip the current command.
NULL Replace current command with YES
NULL. Action is identical to
NO.
OK
H Action is identical to NO.
OK;D #pP Execute the current command and NULL
then display #P. Note D #P is
not subject to veto. ;
YES,SEQ;D #V1 Execute the current command,
display #V1, then inhibit veto These responses cause collection of the command
for the rest of the command sequence to resume. You can then issue another
sequence. terminal interrupt and hope that this time the
interrupt does not occur while in collect mode.

60481400 C

® Terminate collection of the command sequence.

You can terminate collection of the command
sequence by entering as many right brackets (])
as necessary to get out of collect mode,
followed by the PAUSE command. When collection
is terminated in this manner, the interrupted
command sequence remains suspended at the point
where the interrupt was detected. Therefore,
if you enter the GO command, the commands that
would have been collected if the interrupt had
not occurred are executed instead. For ex—
ample, assume the command sequence in
figure 7-1 is executing, and an interrupt is
detected just before the command DISPLAY,#LINE
is collected. When the interrupt is detected,
CID issues the message:

*IN COLLECT MODE

If you enter a right bracket and them the GO
command, the command DISPLAY,#LINE is executed,
rather than collected. When the right bracket
is encountered in the command sequence, CID
issues an error message.

60481400 C

DISPLAY,#V8

SET, TRAP,LINE,* [
DISPLAY,#LINE

;|

ENTER,#V8+1,#V8

Figure 7-1. Command Sequence
For Interrupt Example

You should not enter CID commands (other than the
NULL command) before terminating or resuming
collection of the command sequence; any commands
entered would be collected, and CID does mnot
indicate to you in which command sequence (or where
in that sequence) the commands are being collected.

7-5

SAMPLE DEBUG SESSIONS

Several debug sessions are illustrated. Session A
(figures 8-1, 8-2, and 8-3) shows a single module
COMPASS program that prints the date and time.

8~7, and 8-8) shows a FORTRAN program that contains
overlays. Session D (figures 8-9, 8-10, 8-11, and
8~12) shows a COBOL main program with a FORTRAN

Session B (figures 8-4 and 8-5) shows a FORTRAN subroutine. In the sample sessions, user input is
program. consisting of a main program and several indicated by lowercase letters; CID output is
subroutines. The detection of an wundefined uppercase.
variable is illustrated. Session C (figures 8-6,
IDENT DAYTIME
ENTRY START '
START BSS 0
DATE A GET DATE IN A YY/MM/DD.
cLOCK 8 GET TIME IN B HH.MM.SS.
sB1 1
SA1 A MOVE DATE TO BUFFER
BX6 X1
SA6 BUF
SA2 BLANKS PUT 10 BLANKS IN BUFFER
BX7 X2
SA7 A6+B1
SA1 B MOVE TIME TO BUFFER
BX6 X1
SA6 A7+81
MX6 0 END OF LINE TO BUFFER
SA6 A6+B1
SX7 A6+8B1 SET OQUTPUT IN POINTER
SA7 OUTPUT+2
WRITER OUTPUT ,RECALL WRITE BUFFER 0OUT
ENDRUN FINISH
A BSS 1
B BSS 1
BLANKS DATA 104
BUF BSS 65
OUTPUT FILEB BUF ,65
END START
Figure 8-1. Session A Source Listing
/debug(on)
$DEBUG(ON)
/lgo
CYBER INTERACTIVE DEBUG
? set auxiliary auxfl ewidrbt
? List, map
pBUG., DAYTIME, CPU.CIO, CPU.SYS, UCLOAD
? lm p.daytime
PROGRAM - DAYTIME, FWA = 32478, LENGTH = 1308B
ENTRY POINTS - START
? set trap, store p.daytime
- INTERPRET MODE TURNED ON
? set trap, fetch p.daytime
? go
*T #2, FETCH OF _178 AT _78
? d Hew ¢
HEW = 80/10/20.
. ? go
*T #1, STORE INTO _228 IN _7B
? d few ¢ ' -
#EwW = 80/10/20.
Figure 8-2. Debug Session A (Sheet 1 of 2)
60481400 C 8-1

? go
*T #2, FETCH OF _2718 IN _108B
?7 d #ew c

#EW =

? go
*T #1, STORE INTO _23B AT _11B

?7 d Mew ¢
NEW =

? go
*T #2, FETCH OF _208 IN _ﬂ1B

? d ¥ew ¢
#EW = 10.32.10.

? go
*T #1, STORE INTO _243 AT _128‘

? d #reg :
A0 = 004000 X0 = 00000 00000 00000 00000 B0 = 000000
A1 = 003267 X1 = 553435 35736 35575 433557 B1 = 000001
A2 = 003270 X2 = 55555 55555 55555 55555 82 = 000002
A3 = 000057 X3 = 00000 00000 00000 00000 B3 = 015001
A4 = 000001 X4 = 00000 00000 00000 00000 B4 = 004001
AS = 000317 X5 = 60000 00000 04004 00000 BS = 000317
A6 = 003273 X6 = 55343 35736 35573 43357 Bé6 = 004000
A7 = 003272 = X7 = 55555 55555 55555 55555 B7? = 037756

?2 d#x ¢
X0 =

gz X1 = 10.32.10.

X2 = X5 =
X6 =

X R 1] AS =

D:S
X6 = 10.32.10. X7 =

? go
*T #1, STORE INTO 258 IN _128B

?2 d 21b,,4

_215 = 55555 55555 55555 55555
" 42 = 55555 55555 55555 55555
?2d _27b c 4

55433 35034 33503 53357
55343 35736 35573 43357

_218 = 80/10/20. 10.32.10.
? go

*#T #1, STORE INTO _1258 IN _138

? go

T #2, FETCH OF P.DAYYIHE_123B IN P.CPU.CIQ_?B
? go
*T #2, FETCH OF P.DAYTIHE_1238 IN _28

? go
*T #1, STORE INTO P.DAYTIME_1238 IN _4B

? go
80/10/20. 10.32.10.
*T #17, END IN P.CPU.SYS_4B

?2 d #reg
AQ = 004000 X0 = 00000 00000 00000 00000 BO = 000000
A1 = 000001 X1 = 00000 Q0000 00000 00000 B1 = 000001
A2 = 003270 X2 = 00000 00000 00000 03372 B2 = 000002
A3 = 000057 X3 = 00000 00000 00000 00000 B3 = 015001
A4 = 000001 X4 = 00000 00000 00000 00000 B4 = 004001
A5 = 000317 X5 = 60000 00000 04004 00000 BS = 000317
A6 = 000001 X6 = 05160 42000 00000 00000 B6 = 004000
A7 = 003372 X7 = 00000 00000 00000 00000 B7? = 037756

? list status
HOME = P.CPU.SYS,
INTERPRET ON, OUT OPTIONS = I W E D
AUX FILE = AUXFL, OPTIONS = I W EDRBT
? quit
DEBUG TERMINATED

NO BREAKPOINTS, 2 TRAPS, NO GROUPS,

VETO OFF

8-2

Figure 8-2. Debug Session A (Sheet 2 of 2)

60481400 C

LIST, MAP

DBUG., DAYTIME,
LM P.DAYTIME
PROGRAM - DAYTIME, FWA = 32478B,
ENTRY POINTS - START

SET TRAP, STORE P.DAYTIME
INTERPRET MODE TURNED ON

SET TRAP, FETCH P.DAYTIME

CPU.CIO, CPU.SYS, UCLOAD

LENGTH = 1308

GO
*T #2, FETCH OF _178B AT _78
D HEW C)
HEW = 80/10/20.
GO0
*T #1, STORE INTO _228 IN _78
D #EW C]
#EW = 80/10/20. . .
(]
*T #2, FETCH OF _218 IN _108
D #EW C
HEW =
GO
*T #1, STORE INTO _23B AT _118B
D #EW C
HEW =
GO
*T #2, FETCH OF _20B IN _118
D HEW C
HEW = 10.32.10.
GO
*T #1, STORE INTO _248 AT _128
D #REG
A0 = 004000 X0 = 00000 00000 00000 00000 80 = 000000
A1 = 003267 X1 = 55343 35736 35573 43357 81 = 000001
A2 = 003270 X2 = 55555 55555 55555 55555 82 = 000002
A3 = 000057 X3 = 00000 00000 00000 00000 B3 = 015001
A4 = 000001 X4 = 00000 00000 00000 00000 B4 = 004001
A5 = 000317 X5 = 60000 00000 04004 00000 B85 = 000317
A6 = 003273 X6 = 55343 35736 35573 43357 86 = 004000
A7 = 003272 X7 = 55555 55555 55555 55555 B7?7 = 037756
D #X C)
X0 =
FEREE X1 = 10.32.10.
X2 = X3 =
X4 =
HEEE X5 = #
D:5
X6 = 10.32.10. X7 =
GO

*T #1, STORE INTO _258B IN

D 21B,,4

_128

278 = 55555 55555 55555 55555
55555 55555 55555 55555

”" +2 =
D _218 C 4
_218 =
60

80/10/20.

*T #1, STORE INTO _1258 IN _138

GO

55433 35034 33503 53357

55343 35736 35573 43357

10.32.10.

*T #2, FETCH OF P.DAYTIME_123B IN P.CPU.CIO_7B

*T #2, FETCH OF P.DAYTIME_123B IN _28

*T #1, STORE INTO P.DAYTIME_123B IN

*T #17, END IN P.CPU.SYS_4B

_48B

60481400 ¢

Figure 8-3. Session A Auxiliary File Listing (Sheet 1 of 2)

8-3

s

D #REG

AD = 004000 X0 = 00000 00000 00000 0QOO0O 80 = 000000
A1 = 000001 X1 = 00000 00000 00000 00000 81 = 000001
A2 = 003270 X2 = 00000 00000 00000 03372 82 = 000002
A3 = 000057 X3 = 00000 00000 00000 00000 83 = 015001
A4 = 000001 X4 = 00000 00000 00000 00000 B4 = 004001
A5 = 000317 X5 = 60000 00000 04004 00000 BS = 000317
A6 = 000001 X6 = 05160 42000 00000 00000 86 = 004000
A7 = 003372 X7 = 00000 00000 00000 00000 - B7 = 037756

LIST STATUS

HOME = P.CPU.SYS, NO BREAKPOINTS, 2 TRAPS, NO GROUPS, VETO OFF
INTERPRET ON, OUT OPTIONS = 1 W E D
AUX FILE = AUXFL, OPTIONS = 1 WE DRBT
QuUIT
Figure 8-3. Session A Auxiliary File Listing (Sheet 2 of 2)
1 FTN S.1+4538 81/07/15. 14.13.20 PAGE 1
PROGRAM FACTORS 74/74 oPT=0
1 PROGRAM FACTORS
2 ¢ THIS MAIN PROGRAM CALLS SUBROUTINES THAT READ A LIST OF
3C INTEGERS AND (INTEGER) FIRST FACTORS, SORT THE NUMBERS,
4 ¢C AND FIND THE SECOND INTEGER FACTORS. IF THE FIRST FACTOR
5¢C IS NOT A TRUE FACTOR, "NON-INTEGER" IS PRINTED OUT
6 C INSTEAD OF THE SECOND FACTOR.
7¢C
8 DIMENSION LIST(3,10)
9 CALL GETLIST(LIST)
10 CALL OUTLIST(N,LIST)
11 END
1 FTN 5.1+4538 81/07/715. 14.13.20 PAGE 1

SUBROUTINE GETLIST 74/74 OPT=0

SUBROUTINE GETLIST (LIST)
c THIS SUBROUTINE CALLS SUBROUTINES THAT READ THE LIST
c OF INTEGERS AND FIRST FACTORS, SORT THE NUMBERS,
C AND FIND THE SECOND FACTORS.
c

DIMENSION LIST (3,10)
CALL GETDATA(N,LIST)
CALL SORTLST(N,LIST)
CALL GETFACT(N,LIST)
10 RETURN
11 END ’
1 FTN 5.1+538 81/07/15. 14.13.20 PAGE 1
SUBROUTINE GETDATA 74/74 oPT=0

VXNV UWUN=

1 SUBROUTINE GETDATA(N,LIST)

2 C THIS SUBROUTINE READS IN THE LIST OF NUMBERS

3¢ AND FIRST FACTORS.

4 C

5 DIMENSION LIST (3,10)

g PR:NT *, "TYPE LIST OF NUMBERS AND FIRST FACTORS:'
Ii=

8 100 READ (*,%x, END = 200) LIST(1,I), LIST(2,D)

9 I=I+1

10 G0 TO0 100

11 200 N=I-1

12 RETURN

13 END

Figure 8-4. Session B FORTRAN Main Program and Subroutines (Sheet 1 of 2)

60481400 C

1 FTN 5.14538 T 81/07/15. 14.13.20 PAGE 1
SUBROUTINE SORTLST 74/74 OPT=0

1 SUBROUTINE SORTLST(N,LIST)
2¢ THIS SUBROUTINE SORTS THE NUMBERS AND FIRST
3c FACTORS (BY NUMBER).
4 c
5 DIMENSION LIST(3,N),NTEMP(2) .
6 20 1000 1=2,N
7 b0 500 J=1,I-1
8 IF (LIST(1,I) .LT. LIST(1,J)) GO TO 700
9 500 © CONTINUE

10 60 TO 1000

11 700 NTEMP(1)=LIST(4,1)

12 NTEMP(2)=LIST(2,I)

13 00 800 K=I,J+1,-1

14 LIST(1,K)=LIST(1,K-1)

15 LIST(2,K)=LIST(2,K-1)

16 800 CONTINUE

17 LISTC1,J)=NTEMP(1)

18 LIST(2,J)=NTEMP(2)

19 1000 CONTINUE

20 RETURN

21 END

1 FTN 5.1+538 81/07/15. 14.13.20 PAGE 1

SUBROUTINE GETFACT 74/74 oPT=0

1 SUBROUTINE GETFACT(N,LIST)
2 ¢ THIS SUBROUTINE FINDS THE SECOND FACTORS
3¢ (GIVES ZERO AS THE SECOND FACTOR IF THE
4 ¢ FIRST FACTOR IS NOT A TRUE FACTOR).
5 ¢
3 DIMENSION LIST(3,N)
7 00 100 I=1,N
8 LIST(3,I)=LIST(1,I)/LIST(2,1)
9 IF (LIST(3,I) * LIST(2,I) .NE. LIST(1,I)) LIST (3,1)=0
10 100 CONTINUE
11 RETURN
12 END
1 FTN 5.1+538 81/07/15. 14.13.20 PAGE 1

SUBROUTINE OUTLIST 74/74 OPT=0

SUBROUTINE OUTLIST (N,LIST)

[THIS SUBROUTINE PRINTS OUT THE LIST OF NUMBERS
c AND FIRST AND SECOND FACTORS. "NON-INTEGER"
[IS PRINTED OUT AS THE SECOND FACTOR IF THE
c FIRST FACTOR IS NOT A TRUE FACTOR.
c
DIMENSION LIST(3,N)
PRINT *, ° NUMBER FIRST SECOND'
PRINT *, °* FACTOR FACTOR'
PRINT »

b0 100 1=1,N
IF (LIST(3,I) .EQ. 0) THEN
WRITE (*,50) LIST(1,I),LIST(2,1)
ELSE
WRITE (*,60) LIST(1,I),LIST(2,1),LIST(3,1)
ENDIF
50 FORMAT (5X,218,"” NON-INTEGER™)
60 FORMAT (5X,318)
100 CONTINUE
RETURN
END

N o= b oad = ed) b =2
ODOVRNOOPVNPUWNSL2ODVOINOUVNTWN <

N
-

60481400 C

Figure 8-4. Session B FORTRAN Main Program and Subroutines (Sheet 2 of 2)

8-5

/f¥tnS5,i=factors,lo=0,db=1id
N.153 CP SECONDS COMPILATION TIME.

/debug,on

DEBUG,ON.

/lgo

CYBER INTERACTIVE DEBUG
? display,#home

#HOME = P_.FACTORS

? step -

*S LINE AT L.9
? set,trap,line,p. factors
? set,trap,rj,*

INTERPRET MODE TURNED ON =
? go

*T #2, RJ IN L.9

? go

*T *Z, RJ IN P.GETLIST_L. 7
‘Dgo

*T #2, RJ IN P.GETDATA_L.6
? set,interpret,off =

? traceback

P.GETDATA CALLED FROM P.GETLIST_}.?
P.GETLIST CALLED FROM P.FACTORS_}.9
? set,breakpoint,l.12
? go

TYPE LIST OF NUMBERS AND FIRST FACTORS: =

45,3)
265,12
1899,9
34,2

273,3) -
147,21
54,3

244,4
787,93)

WD D 1) D D D)) Y

*B #1, AT L.12
7 print *, l1st4-—""—_—————r

Initial default STEP command is
STEP,1,LINE,*.

RJ trap turns on interpret mode.

Turning off interpret mode makes the
RJ trap ineffective.

Qutput from subroutine GETDATA.

Input requested by subroutine GETDATA.

FORTRAN CID PRINT command. Undefined
values are printed as asterisks.

45 3 ****************** 265 12 *kxkkkkxkkkkkkkxxx 1899 O
Ahkkhhhhhkhhkhkhhhikhhk 34 2 hhkhkkhkkhkkkkhkkhhkhkdh 273 3 hkkkhkhhkkhhhhkhkhk 147
21 Rkkhkhhkhkhkhkhkhhhhkhkkt 54 3 kkkhhkrkkkkkhkrhkhkkhk 244 b xkkkkkkkhhkkkhkhkx
787 93 khkkkkhhkhkhkhhhkhhhkhk khhkhhhhhhhkhhhhkh khkkkhkkkhkhhkhkkdkhkk

P T T
? set,breakpoint,p.sortlst_L.1

*HARN - LINE 1 NOT EXECUTABLE - LINE 6 WILL BE USED

0K ? Ok =

? go
*B #2, AT P.SORTLST_}.1

? set,trap,store,ntemp(1) [—=
INTERPRET MODE TURNED ON--=

IN COLLECT MODE

? print *,ntemp(1),' placed before ',Llist(1,})

21
END COLLECT

? set,breakpoint,l.10 [-
IN COLLECT MODE
? print *,list(1,i),' placed at end'
21
END COLLECT
? go

*T #2, RJ IN L.8 —=
? clear,trap,#2

Positive keyword is entered in
response to warning message.

A trap body command sequence is-
entered.

STORE trap turns interpret mode
back on.

A breakpoint body command. sequence is
entered.

RJ trap is effective, because
interpret mode is on.

Figure 8-5. Debug Session B (Sheet 1 of 2)

60481400

? go
265
1899

PLACED AT END
PLACED AT END

34 PLACED BEFORE 45
273 PLACED BEFORE 1899

A

147 PLACED BEFORE 265

54 PLACED BEFORE 147

244 PLACED BEFORE 265

787 PLACED BEFORE 1899

*T #1, LINE AT P.FACTORS_L.10
? go

*T #18, ABORT CPU ERROR EXIT 04 IN
? display,#cpuerr :

#CPUERR = 4 -

Command Sequence OQutput.

L.10 Default ABORT trap occurs.

? list,values,p.factors
P.FACTORS)
LIST(1,1)
LIST(2,2)
LIST(3,3)
LIST(1,5)
LIST(2,6)
LIST(3,7)
LIST(1,9)
LIST(1,10)

LIST(3,10)
? N=9 .

34,
3,
18,
244,
12,

LIST(2,1) = 2,
LIST(3,2) = 15,
LIST(1,4) = 147,
LIST(2,5) = 4,
LIST(3,6) ,
91, LIST(1,8) = 787,
1899, LIST(2,9) = 9,
~-288230376077392094,
-288230376077392092,

ABORT -trap occurred because of
undefined value.

LIST(3,1)
LIST(1,3) v

LIST(2,4 21,
LIST(3,5) = 61,
LIST(1,7) = 273,

LIST(2,8) = 93,

LIST(3,9) = 211
LIST(2,10) = -288230376077392093
N = -288230376077392091 ==

=17 LIST(1,2)
= 54 LIST(2,3)
) = LIST(3,4
LIST(1,6)
LIST(2,7)

LIST(3,8)

’ =
’ =
)

3

7
=265
=3
= 0

N is undefined.

FORTRAN CID assignment command.

? clear,trap,* =
INTERPRET MODE TURNED OFF

? go,L.10
NUMBER FIRST

FACTOR

SECOND
FACTOR

34
45
5S4
147
244
265
273
787
1899
*T #17, END IN L.11
? quit
DEBUG TERMINATED

2
3
3
21
4
12
3
93
9

17

15

18

7

61
NON-INTEGER

91
NON-INTEGER

211

<—‘-—--¥—‘__""““--Clearing STORE trap turns off

interpret mode.

Output from subroutine QUTLST.

Figure 8-5.

60481400 C

Debug Session B (Sheet 2 of 2)

8-7

/debug ,on —= Debug mode turned on before program

SDEBUG,ON. compilation.
/f¥tnS5,i=sesnc,lo=s/-a
1 FTN 5.0+528 80/08/29. 15.08.56 PAGE 1

PROGRAM PROGA 767176 OPT=0

OVERLAY (OVFILE,O0,0)
PROGRAM PROGA (INPUT, OUTPUT)
PRINT 100
FORMAT (' IN (0,0) OVERLAY *)
4=5
CALL OVERLAY (6HOVFILE,2,0,6HRECALL)
PRINT 200
FORMAT (' RETURNED TO (0.0) OVERLAY')
sToP
10 END
1 FTN 5.0+528 80/08/29. 15.08.56 PAGE 1
PROGRAM PROGX 76/176 0PT=0

- -
[=]
o

NN

VONOWVESUWN
(=
o

1 OVERLAY (OVFILE,2,0)
2 PROGRAM PROGX
3 PRINT 100
4 100 FORMAT (* IN (2,0) OVERLAY ')
51 K=7)
6 CALL OVERLAY (6HOVFILE,2,5,6HRECALL)
7 PRINT 200
8 200 FORMAT (' RETURNED TO (2,0) OVERLAY ')
9 END
1 FTN 5.0+528 80/08/29. 15.08.56 PAGE 1

PROGRAM PROGZ 76/176 OPT=0

OVERLAY (OVFILE,2,5)
PROGRAM PROGZ
1 n=9
PRINT 200
200 FORMAT (* IN OVERLAY (2,5)')
END
0.025 CP SECONDS COMPILATION TIME.

NS UN=

8-8

Figure 8-6. Session C Source Listing

60481400 C

/lgo
CYBER INTERACTIVE DEBUG
? set auxiliary auxfile ewidbrt =

? Llist map

‘Auxiliary file AUXFILE is created using
E, W, I, D, B, R, and T options.

(0,0) » , (2,0), 2,5)

? lm (0,00 (2,0) (2,5)
(0,0), DBUG., PROGA, SYSAID=, Q5NTRY=, /FCL.C./, /STP.END/
/a5.10./, CHMOVE=, COMIO=, / FCL=ENT/, FCL=FDL, FECMSK=
FLTOUT=, FMTAP=, /AP.10./, FORSYS=, FORUTL=, °~ GETFIT=, KODER=
ouTtc=, OUTCOM=, OVERLAY, QXPMD=, /xJep.c./, CPU.CPM, CPU.CIO
CPU.MVE, CPU.SYS, CMF.ALF, CMM.CIA, CMF.CSF, CMM.FFA
CMF.FRF, CMF.GSS, CMF.LDYV, CMF.LOV, CMM.MEM, CMM.R, CMF.SLF
FDL.RES, /FDL.COM/, FOL.MMI, FOL.RES, UCLOAD, CTLSRM, CTLSWR
ERRSRM, LISTSRM, RMSSYS=
2,0), PROGX
2,5), PROGZ .

? set trap overlay »

? d #home

#HOME = (0,0)P.PROGA - Overlay included in location report.

? go

IN (0,0) OVERLAY

*T #1, OVERLAY (2,0)
? d #home

H¥HOME = (2,0)P.PROGX
? go L.3

IN (2,0) OVERLAY

*T #1, OVERLAY (2,5)
? d #home

H#HOME = (2,5)P.PROGZ
? List values

(0,0)P.PROGA

J =5

(2,0)P.PROGX

K 7

(2,5)P.PROGZ)

M = -288230376077387186
? go L.3

IN OVERLAY (2,5)

RETURNED TO (2,0) OVERLAY
RETURNED TO (0.0) OVERLAY

*T #17, END IN (0,0)P.PROGA_L.9
? Llist values

(0,0)P.PROGA

Jd =5

(2,0)P.PROGX

K =7

(2,5)P.PROGZ

M=9
? d #home

#HOME = (0,0)P.PROGA
? list map
(0,0) > ,
? quit
DEBUG TERMINATED

IN (2,0)P.PROGX_L.O

IN (2,5)P.PROGZ_L.O

(2,00 » , (2,5) *

figure 8-7. Debug Session C

60481400 C

8-9

CYBER INTERACTIVE DEBUG

-

LIST MAP

<0,0) » , (2,0), 2,%)

LR (0,0) €2,0) (2,5)

(0,0, bBuG., PROGA, SYSAID=, QSNTRY=, /FCL.C./, /STP.END/
/e5.10./, CHMOVE=, comio=, / FCL=ENT/, FCL=FDL, FECMSK=
FLTYOUT=, FMTAP=, /AP.10./, FORSYS=, FORUTL=, GETFIT=, KODER=
ouTCc=, OUTCOM=, OVERLAY, axPmop=, /xJpP.C./, cCPU.CPM, CPU.CIO
CPU.MVE, CPU.SYS, CMF.ALF, CMM.CIA, CMF.CSF, CMM.FFA

CHF.FRF, CMF.GSS, CMF.LDV, CMF.LOV, CMM.MEM, CMM.R, CMF.SLF
FOL.RES, /FDL.COM/, FDL.MNMI, FOL .RES, UCLOAD, CTLSRNM, CTLSUR
ERRSRNM, LISTSRM, RMSSYS= . :
2,00, PROGX

2,5), PROG6Z

SET TRAP OVERLAY »*

D SHORE

#SHORE = (0,0)P.PROGA

(1]

*T #1, OVERLAY (2,0) IN (2,0)P.PROGX_L.O

D #HORE

#HOPME = (2,0)P.PROGX

G0 L.3

*T #1, OVERLAY (2,5) IN (2,5)P.PROGZ L.O

D #HOME

#HOME = (2,5)P.PROGZ

LIST VALUES

(0,0)P.PROGA

J =5

(2,0)P.PROGX

K =7

(2,5)P.PROGZ

" = -288230376077387186

GO0 L.3

*T #17, END IN (0,0)P.PROGA_L.9

LIST VALUES

(0,0)P.PROGA

J =95

(2,0)P.PROGX

K =7

(2,5)P.PROGZ

M=29

D #HOME

#HOME = (0,0)P.PROGA

LIST MAP

(0,0) ~ , 2,0) = , (2,5) *

QuIlT

8-10

Figure 8-8. Session C Auxiliary File Listing

60481400 C

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. SALES-TEST. :
3 * THIS PROGRAM TAKES SALES DATA FROM TWO YEARS TO STATISTICALLY
4 * DETERMINE IF A NEW ADVERTISING METHOD INCREASED SALES.
5 *
6 * INPUT DATA IS A LIST OF SALES OFFICES AND THEIR FIRST~ AND LAST-
7 * YEAR SALES FIGURES. AN INPUT LINE IS AS FOLLOWS:
8 - * SALES-OFFICE ’ PICTURE X(20).
9 * FIRST-YEAR-SALES PICTURE 9999Vv99,
10 * SECOND-YEAR-SALES PICTURE 9999Vv99.
11 *
12 * A DIFFERENCE STATISTIC IS CALCULATED FROM THE SALES FIGURES OF
13 * EACH OFFICE BY DIVIDING THE FIRST-YEAR-SALES INTO THE DIFFERENCE OF
14 * THE TWO SALES FIGURES FOR THE OFFICE.
15 *
16 * A TABLE OF DIFFERENCE STATISTICS IS GIVEN TO THE FORTRAN SUBROUTINE
17 * NORMAL WHICH PERFORMS THE STATISTICAL TEST. NORMAL RETURNS THE
18 * TEST RESULT THROUGH THE DATA-ITEM DECISION, AND THIS RESULT IS TRANS-
19 * LATED INTO ONE OF THE FOLLOWING:
20 * ACCEPT THE HYPOTHESIS THAT BOTH METHODS ARE EQUAL.
21 * ACCEPT THE HYPOTHESIS THAT YEAR 2 METHOD IS BETTER.
22 *
23 ENVIRONMENT DIVISION.
24 CONFIGURATION SECTION.
25 SOURCE-COMPUTER. CYBER-170.
26 OBJECT-COMPUTER. CYBER-170.
27 INPUT-OUTPUT SECTION.
28 FILE-CONTROL.
29 SELECT IN-FILE ASSIGN TO "SALES".
30 SELECT OUT-FILE ASSIGN TO “OUTPUT".
31 SELECT SORT-FILE ASSIGN TO SORTFIL.
32 DATA DIVISION.
33 FILE SECTION.
34 FD IN-FILE
35 BLOCK CONTAINS 640 CHARACTERS
36 LABEL RECORD IS OMITTED
37 DATA RECORD IS LINE-IN.
38 01 LINE-IN.
39 05 OFFICE PICTURE X(20).
40 0S5 FIRST-YEAR-SALES PICTURE 9999Vv99.
41 05 SECOND-YEAR-SALES PICTURE 9999Vv99.
2§ 05 FILLER PICTURE X(8).
44 FD OUT-FILE
45 LABEL RECORD IS OMITTED
46 DATA RECORDS ARE LINE-OUT, FINAL-LINE.
47 01 LINE-OUT.
48 05 FILLER PICTURE X(10).
49 05 OFFICE PICTURE X(20).
50 05 FIRST-YEAR-SALES PICTURE BB$%$%$$9.99.
51 05 SECOND-YEAR-SALES PICTURE BB$$$$9.99.
52 05 DIFF-STAT PICTURE =-(9)9.9999.
53 05 FILLER PICTURE X(50).
54 01 FINAL-LINE.
55 05 FILLER PICTURE X(3).
56 05 MEAN PICTURE 22729.9999.
57 05 VARIANCE PICTURE Z229.9999.
58 05 NUMBER-OF-OFFICES PICTURE Z(7)9V.
59 05 P-VALUE PICTURE B(7)2Z229.9999.
60
61 SD SORT-FILE
62 RECORD CONTAINS 40 CHARACTERS
63 DATA RECORD IS SORT-SALES-LINE.
64 01 SORT-SALES-LINE.
65 05 OFFICE PICTURE X(20).
66 05 FIRST-YEAR-SALES PICTURE 9999Vv99.
67 05 SECOND~-YEAR-SALES PICTURE 9999V99.
68 05 FILLER PICTURE X(8).
69
Figure 8-9. Session D; COBOL Main Program (Sheet 1 of 3)
60481400 C 8-11

70
71
72

74
75
76
77
78
79
80
31
82
83
84
8s
86
87
a8
89
90
91
92
93
9%
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

WORKING-STORAGE SECTION.

01 SPACE-LINE PICTURE X(100) VALUE SPACES.
01 HDG-1-LINE-1.
0S5 FILLER PICTURE X(12) VALUE SPACES.
05 FILLER PICTURE X(21)
VALUE "SALES OFFICE".
0S5 FILLER PICTURE X(40)
VALUE “YEAR 1 YEAR 2 . DIFFERENCE".
01 HDG-1-LINE-2.
05 FILLER PICTURE X(33) VALUE SPACES.
05 FILLER PICTURE X(40)
’ VALUE "SALES SALES STATISTIC".
01 HDG-2-LINE-1.
05 FILLER PICTURE X{(8) VALUE SPACES.
05 FILLER PICTURE X(7) VALUE "MEAN".
‘05 FILLER PICTURE X(10) VALUE "VARIANCE".
05 FILLER PICTURE X(15) VALUE "NUMBER OF".
05 FILLER PICTURE X(10) VALUE "P-VALUE".
01 HDG-2-LINE-2.
05 FILLER PICTURE X(26) VALUE SPACES.
05 FILLER PICTURE X(10) VALUE "OFFICES".

01 COMP-ITEMS.
05 DIFFERENCE-STAT-TABLE.
10 DIFFERENCE-STAT OCCURS 10 TIMES
INDEXED BY DIFF-INDEX.
15 DIFFERENCE-STATISTIC USAGE COMP-2.

05 NUMBER-OF~-OFFICES PICTURE 999V USAGE COMP-1.
05 ALPHA USAGE COMP-2,

05 P-VALUE USAGE COMP-2.

05 MEAN USAGE COMP-2.

05 VARIANCE USAGE COMP-2.

05 DECISION PICTURE 9V.

PROCEDURE DIVISION.

- OPEN-AND-INITIALIZE SECTION.

OPEN-FILES.
OPEN INPUT IN-FILE
OUTPUT OUT-FILE.
INITIALIZE-VALUES.
SET DIFF-INDEX TO 1.
MOVE ZERO TO NUMBER-OF-OFFICES OF COMP-ITEMS.

READ-DATA-AND-PERFORM-TEST SECTION.
SORT-THE-INPUT-RECORDS.
SORT SORT-FILE ON ASCENDING KEY OFFICE OF SORT-SALES~LINE
INPUT PROCEDURE IS GET-INPUT-LINE
OUTPUT PROCEDURE IS ARRANGE-AND-WRITE-SALES-DATA.

TEST-FOR-INCREASE-IN-SALES.

MOVE 0.05 TO ALPHA OF COMP-ITEMS.
ENTER FTN5 NORMAL
USING NUMBER-OF-OFFICES OF COMP-ITEMS

DIFFERENCE-STAT-TABLE
ALPHA OF COMP-ITEMS
MEAN OF COMP-ITEMS
VARIANCE OF COMP-ITEMS
P-VALUE OF COMP-ITEMS
DECISION.

- 8-12

Figure 8-9. Session D; COBOL Main Program (Sheet 2 of 3

60481400

129 WRITE LINE-OUT FROM SPACE-LINE.

130 WRITE LINE-OUT FROM HDG-2-LINE-1.

131 WRITE LINE-OUT FROM HDG-2~-LINE-2.

132 WRITE LINE-OUT FROM SPACE-LINE.

133 MOVE CORRESPONDING COMP-ITEMS TO FINAL-LINE.

134 WRITE FINAL-LINE.

135 WRITE LINE-OUT FROM SPACE-LINE.

136 IF DECISION = 1 MOVE .

137 "ACCEPT HYPOTHESIS THAT BOTH METHODS ARE EQUAL."

138 TO LINE-OUT

139 ELSE MOVE

140 * "™ACCEPT HYPOTHESIS THAT YEAR 2 METHOD IS BETTER."

141 TO LINE-OUT.

142 WRITE LINE-OUT.

143 WRITE LINE-OUT FROM SPACE-LINE.

144

145 END-PROCESSING-SECTION.

146 CLOSE-FILES.

147 CLOSE IN-FILE, OUT-FILE.

148 STOP-EXECUTION.

149 STOP RUN.

150

151 GET-INPUT-LINE SECTION.

152 READ-RECORD.

153 READ IN-FILE

154 AT END GO TO END-OF-DATA.

155 ADD 1 TO NUMBER~-OF~OFFICES OF COMP-ITEMS.

156 RELEASE SORT~SALES-LINE FROM LINE-IN.

157 GO TO READ-RECORD.

158 END-OF-DATA.

159

160 ARRANGE-AND-WRITE-SALES-DATA SECTION.

161

162 WRITE-FIRST-HEADINGS.

163 WRITE LINE-OUT FROM SPACE-LINE.

164 WRITE LINE-OUT FROM HDG-1-LINE-1.

165 WRITE LINE-OUT FROM HDG-1-LINE-2.

166 WRITE LINE-OUT FROM SPACE-LINE.

167

168 GET-NEXT-SORT~FILE-RECORD.

169 RETURN SORT-FILE RECORD

170 AT END GO TO END-OF~SECTION.

171

172 CALCULATE-DIFFERENCE~STATISTIC.

173 COMPUTE DIFFERENCE-STATISTIC (DIFF-INDEX)

174 = (SECOND-YEAR-SALES OF SORT-SALES~-LINE

175 = FIRST-YEAR-SALES OF SORT-SALES-LINE) /

176 FIRST-YEAR-SALES OF SORT-SALES-LINE.

177

178 ARRANGE-OUTPUT-LINE.

179 MOVE CORRESPONDING SORT-SALES-LINE TO LINE-OUT.

180 MOVE DIFFERENCE-STATISTIC (DIFF-INDEX) TO DIFF-STAT.

181 SET DIFF-INDEX UP BY 1.

182 WRITE LINE-OUT.

183 GO GET-NEXT-SORT-FILE-RECORD.

184 END-OF~-SECTION.

Figure 8~9. Session D; COBOL Main Program (Sheet 3 of 3)

60481400 C . 8-13

1 FTN 5.1+538

SUBROUTINE NORMAL

VWO NOITVNHWN =

OO0

28 100

81/07/15.
74/74

14.40.02 PAGE 1
0PT=0

SUBROUTINE NORMAL (N,X,ALPHA,AVG,VAR,PVALUE,DECISN)
THIS SUBROUTINE USES THE NORMAL DISTRIBUTION TO TEST
HYPOTHESIS HO: POPULATION MEAN IS EQUAL TO ZERO

VERSUS HA: POPULATION MEAN IS GREATER THAN ZERO.

VALUES PASSED TO THIS SUBROUTINE ARE:

N SAMPLE POPULATION SIZE

X SAMPLE POPULATION ARRAY

ALPHA SIGNIFICANCE LEVEL OF THE TEST

VALUES RETURNED BY THIS SUBROUTINE ARE:

AVG SAMPLE MEAN (AVERAGE)
VAR VARIANCE
PVALUE P-VALUE -- APPROXIMATED THROUGH FUNCTION P(Y)

DECISN TEST RESULT -- 1=ACCEPT HO; 2=ACCEPT HA

DIMENSION X(10)
INTEGER DECISN

PCY) = .5 * (1 + .196854*Y + _1151944Yx*2

A + .000344%Y%x3 + _019527*Y*%4)
8 *k(=4)

CALCULATE MEAN AND VARIANCE

AVG=0

VAR=0

b0 100 I=1,N
AVG=AVG+X (1)
VARSVAR+X (1) %2

CONTINUE
AVG=AVG/N
VAR=VAR/N-AVG*+2
GET PVALUE
1=(AVG*SQRT (REAL(N))) /SQRT(VAR)
IF (Z .GE. 0) THEN
PVALUE = P(Z)
ELSE
PVALUE = 1 - P(-2)
END IF
ACCEPT HO OR HA
1F (PVALUE .LT. ALPHA) THEN
DECISN = 2
ELSE
DECISN = 1
END IF
RETURN
END

Figure 8-10. Session D; FORTRAN Subroutine

BOSTON 347988405772
SEATTLE 472359417762
DENVER 246836156618
LOS ANGELES 520805352443
DALLAS 662118477667
MIAMI 322441322001
CHICAGO 900732898254
SALT LAKE 227400225367
Figure 8-11. Session D; Input Data on File SALES

v 8-14

60481400 C

0 00%18%09

S1-8

/lgo
SALES OFFICE YEAR 1 YEAR 2 DIFFERENCE
SALES SALES STATISTIC
BOSTON $3479.88 $4057.72 0.1660
CHICAGO $9007.32 $8982.54 -0.0027
DALLAS $6621.18 $4776.67 -0.2785 Programs compiled for use with CID are
DENVER $2468.36 $1566.18 -0.3654 run with debug mode turned off. An
LOS ANGELES $5208.05 $3524.43 -0.3232 — error exists: The test concludes that
MIAMI $3224.41 $3220.01 -0.0013 the year 2 method is better even though
SALT LAKE $2274.00 $2253.67 -0.0089 all but one office lost money.
SEATTLE $4723.59 $4177.62 -0.1155 '
MEAN VARIANCE NUMBER OF P-VALUE
OFFICES
0.1162 0.0310 8 0.9691
ACCEPT HYPOTHESIS THAT YEAR 2 METHOD IS BETTER. /
LGO.
/debug,on —= - Debug mode is turned on.
DEBUG,ON.
/lgo
CYBER INTERACTIVE DEBUG
? set,trap,procedure,% [—= PROCEDURE trap with a trap body is set.
IN COLLECT MODE
? display,#proc
21 Breakpoint set at beginning of
END COLLECT _— GET-INPUT-LINE section.
? set,breakpoint,pr.get-input-Line .
? go
#PROC = P.SALES~T_PR.OPEN-AND~INITIALIZE As a result of the PROCEDURE trap,
#PROC = P.SALES-T_PR.OPEN-FILES debug variable #PROC is automatically
#PROC = P.SALES-T PR.INITIALIZE~VALUES —~ displayed at the beginning of each
#PROC = P.SALES-T PR.READ-DATA-AND-PERFORM-TEST paragraph or section in the Procedure
#PROC = P.SALES-T_PR.SORT-THE-INPUT-RECORDS Division.
*B #1, AT PR.GET~INPUT-LINE —= ———
? clear,breakpoint,* Breakpoint suspends execution.
? step,1,procedure = : .
#PROC = P.SALES-T_PR,GET-INPUT-LINE \STEP command is entered.
*S PROCEDURE AT PR.READ-RECORD '
? step =
*S PROCEDURE AT PR.READ-RECORD T STEP command with no parameters repeats
? display line-in ‘ previous STEP.
BOSTON 347988405772
? step
*S PROCEDURE AT PR.READ-RECORD
? display line-in = ' COBOL CID DISPLAY command is entered.
SEATTLE 472359417762

Figure 8-12., Debug Session D (Sheet 1 of 3)

91-8 .

2 00%18%09

?7 set,breakpoint,pr.end-of-data

? go
#PROC = P.SALES-T_PR.READ-RECORD
#PROC = P.SALES~T_PR.READ-RECORD
#PROC = P.SALES-T PR.READ-RECORD
#PROC = P.SALES-T:PR.READ-RECORD
#PROC = P,.SALES~T_PR.READ-RECORD
#PROC = P.SALES~-T PR.READ-RECORD

*B #1, AT PR.END-OF-DATA
» _

? clear,breakpoint,*

? clear,trap,*

? set,breakpoint,p.normal_L.1

*WARN - LINE 1 NOT EXECUTABLE - LINE 23 WILL BE USED

0K ? ok -
? go
SALES OFFICE YEAR 1 YEAR 2 DIFFERENCE
SALES SALES STATISTIC

BOSTON $3479.88 $4057.72 0.1660
CHICAGO $9007.32 $8982.54 -0.0027
DALLAS $6621.18 $4776.67 -0.2785
DENVER $2468.36 $1566.18 ~-0.3654
LOS ANGELES $5208.05 $3524.43 -0.3232
MIAMI $3224.41 $3220.01 -0.0013
SALT LAKE $2274.00 $2253.67 -0.0089
SEATTLE $4723.59 -0.1155

$4177.62

*B #1, AT P.NORMAL_ L.17 =
? print *,n,alpha -
8 5.E-02 \
? print *,x
.1660517029323 =2.751095775436E~03 —-.2785772324571 -.3654977393897
-.3232726260309 ~1.3645907313276E-03 -8.9401934916447E-03
-.1155836979924 -7.1738305547276E+57 -7.1738305547276E+57
? set,breakpoint,p.normal_t.44
? go
*B #2, AT P.NORMAL_L.44
? print *,pvalue,decisn
«9691398559997 1 -
? set,trap,line,*
? go
*T #1, LINE AT L.44
? go
«T #1, LINE AT P.SALES-T L.129=—

? display decision of comp-items ==

Positive keyword is entered in response
to warning message.

Breakpoint suspends execution in
FORTRAN subroutine.

FORTRAN CID PRINT command is entered.

DECISN=1. Hypothesis that both methods
are equal should be accepted.

Return to COBOL main program.

DECISION is blank instead of 1. A look
at the source listings shows that
DECISION is not a COMP-2 item, even
though DECISN, in the FORTRAN subroutine,
is floating-point. DECISION should be
made COMP-2.

Figure 8-12. Debug Session D (Sheet 2 of 3)

O 00%18%09

LT-8

? Llist,values

P.SALES-T

<01>LINE-IN:<05>0FFICE=SALT LAKE <05>FIRST-YEAR-SALES= 2274.00
<05>SECOND~YEAR-SALES= 2253,67<01>LINE-OUT

<05>0FFICE=SEATTLE <0S>FIRST-YEAR-SALES= $4723.59
<05>SECOND-YEAR-SALES= $4177.62<05>DIFF-STAT= -0.1155
<01>FINAL-LINE :<05>MEAN= SEA<KNOS>VARIANCE=TTLE
<O5>NUMBER-OF-OFFICES= <05>P-VALUE= $4723.59 $417

<01>SORT-SALES-LINE:<0S>0FFICE=SEATTLE
<05>FIRST-YEAR-SALES= 4723.59<05>SECOND~-YEAR-SALES= 4177.62
<01>SPACE-LINE=

<01>HDG-1-LINE~1:<01>HDG~1-LINE-2
<01>HDG~2-LINE-1:<01>HDG-2-LINE=2:<01>COMP-ITEMS
<05>DPIFFERENCE-STAT-TABLE:<10>DIFFERENCE~-STAT:<IX>DIFF-INDEX= 9
<15>DIFFERENCE-STATISTICL11=+.016605170293228E+0001[21=
=.027510957754359€E-0001C31=-,027857723245705E+0001[4]=
=.036549773938971E+0N01(51=~.032327262603085E+0001L61=
=.013645907313275E-0001L71=-,089401934916446E-0001(81]=
=.011558369799241E+0001T91=~.717383055472760E+0058110]=
~.717383055472760E+0058<05>NUMBER~-OF-0FFICES= 8<05>ALPHA=
+.049999999999999E+0000<NS5>P=-VALUE=+.096913985599972E+0001
<05>MEAN=~,011624193411702E+0001<05>VARIANCE=+.031077960211124E+0000
<05>DECISION=
P.NORMAL
ALPHA = .50000000000000E-01, AVG = -.11624193411702, DECISN = 1
I =9 N =8, PVALUE = .96913985599973, VAR = .31077960211124E-01

’
X(1) = .16605170293228, X(2) = ~.27510957754360E-02
X(3) = -.27857723245705, X(4) = -.36549773938972
X(5) = -.32327262603085, X(6) = -.13645907313276E-02
X(7) = -.89401934916447E-02, X(8) = =.11558369799242
X(9) = -.71738305547276E+58, X(10) = -.717383N5547276E+58, Y = -1

Z = -1,8650117305834
? clear,trap,*

? go
MEAN VARIANCE NUMBER OF P-VALUE
OFFICES
0.1162 0.0310 8 0.9691

ACCEPT HYPOTHESIS THAT YEAR 2 METHOD IS BETTER.

*T #17, END IN L.149 —=

A

? quit
DEBUG TERMINATED

LIST,VALUES output for COBOL main
program. .

LIST, VALUES output for FORTRAN
subroutine.

Defau]t END trap.

Figure 8-12. Debug Session D (Sheet 3 of 3)

STANDARD CHARACTER SETS : - A

*

Control Data operating systems offer the following
variations of a basic character set:

® CDC 64—character set
® CDC 63-character set
® ASCII 64-character set
® ASCII 63-character set

The set in use at a ﬁarticular installation is
specified when the operating system is installed.

Depending on another installation option, the
system assumes an input deck has been punched
either in 026 or in 029 mode (regardless of the
character set in use). Under NOS/BE, the alternate
mode can be specified by a 26 or 29 punched in
columns 79 and 80 of the job statement or any 7/8/9

60481400 C

card. The specified mode remains in effect
throughout the job wunless it is reset by
specification of the alternate mode on a subsequent
7/8/9 card.

Under NOS, the alternate mode can be specified by a
26 or 29 punched in columns 79 and 80 of any 6/7/9
card, as described above for a 7/8/9 card. In
addition, 026 mode can be specified by a card with
5/7/9 multipunched in column 1; 029 mode can be
specified by a card with 5/7/9 multipunched in
column 1 and a 9 punched in column 2.

Graphic character representation appearing at a
terminal or printer depends on the installation
character set and the terminal type. Characters
shown in the CDC Graphic column of the standard
character set table (table A~1) are applicable to
BCD terminals; ASCII graphic characters are
applicable to ASCII-CRT and ASCII-TTY terminals.

TABLE A-1. STANDARD CHARACTER SETS

cDC ASCIHI
Display Hollerith External .
Code Graphic Punch BCD Graphic r(»:;g; (ggfa‘:)
(octal) (026) Code
1 1t Tt -1
00 : {colon) 8-2 00 : (colon) 8-2 072
01 A 12-1 61 A 121 101
02 B 12-2 62 B 12-2 102
03 [o 12-3 63 [12-3 103
04 D 124 64 D 124 - 104
05 E 125 65 E 125 105
06 F 12-6 66 F 126 106
07 G 12-7 67 G 127 107
10 H 128 70 H 128 110
1 1 129 71 ! 129 1
12 J 1141 41 J 111 112
13 K 11-2 42 K 112 113
14 L 11-3 43 L 11-3 114
15 M 114 44 M 114 115
16 N 115 45 N 116 116
17 (o} 11-6 46 o} 116 117
20 P 11-7 47 P 117 120
21 Q 118 50 Q 118 121
22 R 119 51 R 119 122
23 S 0-2 22 S 0-2 123
24 T 0-3 23 T 0-3 124
25 U 04 24 U 04 125
26 \' 0-5 25 v 05 126
27 w 0-6 26 w 06 127
30 X 0-7 27 X 0-7 130
31 Y 08 30 Y 08 131
32 Z 09 31 V4 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 11 9 9 071
45 + 12 60 + 12-8-6 053
46 ; 11 40 . 11 055
47 11-84 54 11-8-4 052
50 / 0-1 21 / 01 057
51 (084 34 (1285 050
52) 1284 74) 1185 051
53 $ 11-8-3 53 $ 11-8-3 044
54 = 8-3 13 = 8-6 075
55 blank no punch 20 blank no punch 040
56 , (comma) 0-8-3 33 , (comma) 0-8-3 054
57 . {period) 12-8-3 73 . (period) 12-8-3 056
60 = 0-8-6 36 # 83 043
61 [87 17 C 12-8-2 133
62] 0-8-2 32] 11-8-2 135
63 % 1T 86 16 9% Tt 0-8-4 o5
64 = 8-4 14 " {quote) 8-7 042
65 -~ 0-8-5 35 __(underline) 085 137
66 v 11-0 52 ! 12-8-7 041
67 A 0-8-7 37 & 12 046
70 t 11-85 55 ' (apostrophe) 85 047
71 } 11-8-6 56 ? 0-8-7 077
72 < 12-0 72 < 12-8-4 074
73 > 187 57 > 0-8-6 076
74 < 8-5 15 @ 84 100
75 pd 1285 75 \ 082 134
76 = 12-8-6 76 — {circumflex) 11-8-7 136
77 ; {semicolon) 1287 77 ; {semicolon) 11-8-6 073
TTwelve zero bits at the end of a 60-bit word in a zero byte record are an end-of-record mark rather than
two colons.
TtIn instalations using a 63-graphic set, display code 00 has no associated graphic or card code; display
code 63 is the colon {8-2 punch). The % graphic and related card codes do not exist and translations
yield a blank (56g).

60481400 C

DIAGNOSTICS | B

“

Diagnostic messages issued by CYBER Interactive
Debug are divided into the following categories:

¢ Error messages
® Warning messages

® Informative messages

ERROR MESSAGES

Error messages issued by CYBER Interactive Debug
are listed in table B-1. These messages are issued
in one of the following forms:

*ERROR - message text
?

or

*CMD - (command text) *ERROR - message text

?
When in collect mode, errors, such as those
involving invalid syntax, are detected and reported
prior to being collected, thus allowing them to be
corrected at that time. Other errors are not
detected until execution of the command is
attempted.

Refer to section 7 for a discussion of error
processing, including descriptions of available

user responses to error messages, and the resulting
actions.

WARNING MESSAGES

Warning messages issued by CYBER Interactive Debug
are listed in table B-2. These messages have one
of the following forms:

TABLE B-1.

*WARN - message text
OK?
or
*CMD - (command text) *WARN - message text
OK?

Most of the warning messages indicate by their
wording the action that is taken if you respond
with a positive acknowledgment (YES, ACCEPT, or OK,
as described: in section 7).

Warning messages can be suppressed by issuing a
SET,OUTPUT command that does not include the W
parameter in its option list. The action indicated
in the message automatically occurs. (The
SET,OUTPUT command is described in section 5.)

INFORMATIVE MESSAGES

Informative messages issued by CYBER Interactive
Debug are listed in table B-3. These messages have
the form:

message text

Informative messages indicate the following:
changes in the status of CID, changes in the status
of commands that process a list, commands which
confirm specific actions taken, conditions when a

list element cannot be processed, and conditions
when there is no action to be taken.

After the informative message 1is issued, CYBER
Interactive Debug does not pause for a response,
except when the message announces the start or
resumption of a debug session. Any remaining
elements in a list are processed after reporting a
list element that cannot be processed.

ERROR MESSAGES

Message
*ERROR - ADDRESS IN
ECS/LCM
memory.
*ERROR - ADDRESS IN
UNLOADED OVERLAY

overlay designation.

*ERROR - ADDRESS OUTSIDE
USER AREA o

60481400 C

Significance Action

W

GO or EXECUTE has been supplied with a location
parameter that is in extended memory. If
supplied, the address must be one in central

A specified symbolic address implies ome con—
tained in an overlay not currently loaded.
LIST,MAP indicates which overlays are currently
loaded by displaying an asterisk following the

An address reference is to a location in DBUG.
beyond the first 1008 (approximately) loca-
tions or beyond the field length. You cannot
access these locations.

Correct and reenter.

Confine symbolic addresses
to those in currently
loaded overlays.

Reenter with an allowable
address.

B-1

TABLE B-1. ERROR MESSAGES (Contd)

Message

Significance

Action

*ERROR - ARGUMENT LEVEL
MISMATCH

*ERROR - COMMAND/EXPRESSION
TOO COMPLEX

*ERROR —~ CONTROL INDEX xxxx
DOUBLY DEFINED, REASSIGN
INDEX

*ERROR - COUNT TOO LARGE

*ERROR - DEBUG INTERNAL
ERROR

*ERROR - ENTRY POINT xxxx
NOT CALLED

*ERROR - ENTRY POINT xxxx
NOT LOADED

*ERROR — ERROR MESSAGES MAY
NOT BE SUPPRESSED

*ERROR - FIRST ADDRESS OF
RANGE GREATER THAN SECOND

*ERROR - FORMAT CODE MUST
BEA, C, D, I, F, or O

*ERROR - ILLEGAL MASKING
OR LOGICAL OPERAND

*ERROR — ILLEGAL TYPE

*ERROR -~ ILLEGAL TYPE FOR
INDEX xxxx yyyy VALUE

*ERROR — IMPROPERLY NEGATIVE

*ERROR - INCOMPATIBLE
OPERAND TYPES

*ERROR - INVALID FIRST,
LAST OR STEP VALUE

B-2

Declared level of actual argument does not
agree with level of FORTRAN 5 subroutine or
function format argument.

An expression is too complex in an IF, PRINT,
or assignment statement; or a PRINT list is too
complex.

The same control index has been used more than
once in the nested implied DO loops of the
PRINT statement.

The count in a STEP command is greater than
536870911.

An error in CID is preventing further process-
ing. CID must be aborted. The program being
debugged could have damaged a portion of DBUG.

A TRACEBACK has been requested from an entry
point to which no call has been made.
LIST,MAP,P.progname lists all entry points
in a given program module.

TRACEBACK cannot proceed because the specified
entry point is contained in an overlay not
currently loaded.

Completing the current SET,OUTPUT,

SET ,AUXILIARY, CLEAR,OUTPUT, or CLEAR,AUXILIARY
command results in no file being designated to
receive error messages.

An address range in the format of the ellipsis
notation is invalid for the reason stated.

DISPLAY code is incorrect.

An expression in an IF, PRINT, or assignment
statement contains an AND or OR operator with
one type logical operand and one operand other
than type logical.

A COBOL data item is being used in a way that
is wrong for its type.

An initial final or increment value (as speci-
fied by yyyy) of index xxxx in an implied DO of
a PRINT statement has a data type other than
integer, real, or double~precision.

A COBOL literal or data item is negative and
is being used where only positive numbers are
allowed. :

Expression contains incompatible operands,
usually a string and a nonstring.

A breakpoint has been supplied with an invalid
frequency parameter.

Correct FORTRAN program.

Simplify and reenter.

Correct and reenter.

Reenter with a lower count.

Try a new debug session
with all execution per-
formed in interpret mode,
which protects DBUG. code.

Try tracing from each
named entry point.

Enter another command.

Assign file options
consistent with this
restriction.

Correct and reenter.

Reenter with a valid code,
or omit the DISPLAY code
allowing the default value
to be used.

Correct and reenter.

Correct and reenter.

Correct and reenter.

Correct and reenter.

Correct and reenter.

Check that all such param-—
eters are positive. Check
that LAST is not less than
FIRST. Reenter with cor-
rected values.

60481400 C

TABLE B-1. ERROR MESSAGES (Contd)

~

Message

Significance

Action

*ERROR - INVALID PARAMETER
XXX

*ERROR - INVALID PARAMETER
TYPE xxxx

*ERROR - INVALID QUALIFIER
FOR OVERLAY TRAPS

*ERROR - INVALID SYNTAX
XXXX

*ERROR - INVALID TRAP TYPE
XXXX

*ERROR - INVALID TYPE
FOR STEP - xxxx

*ERROR - LABEL LONGER THAN
7 CHARACTERS xxxx

*ERROR — LINE NUMBERS NOT
AVAILABLE

*ERROR - MESSAGE LEVEL CODE
MUST BE L, P, S, or PR

*ERROR - MOVE CANT DO THIS

*ERROR ~ NAME LONGER THAN
7 CHARACTERS xxxx

*ERROR ~ NAME LONGER THAN
30 CHARACTERS xxxx

*ERROR - NO COMMON BLOCK
XXXXKX

*ERROR - NO ENTRY POINT
XXXX

*ERROR - NO EXECUTABLE
STATEMENT n

*ERROR -~ NO FILE OR GROUP
XXXX

60481400 C

The supplied HELP parameter is invalid.

The parameter supplied is a type not allowed
for this command. If this error occurs in a
command sequence body, it is detected at
collect time.

An overlay trap qualifier other than an overlay
designation for * was specified in a SET,TRAP,
LIST,TRAP, CLEAR,TRAP, or SAVE,TRAP command.

A recognizable command contains syntactic
elements of a form or in an order other than as
defined for the command. If this error occurs
in a command sequence body, it is detected at
collect time.

A SET,TRAP command has an invalid trap type
parameter value.

The type parameter in a STEP command is
invalid.

A LABEL or JUMP command is supplied with a
label parameter greater than seven characters.

Referenced program is not a high level language
program compiled for use with CID.

The message level code for a SET,TRAP command

is other than the L, P, S, or PR parameter. If
the parameter is omitted, the default value is

used.

A COBOL CID MOVE command has an illegal
combination of types.

The supplied name of a program module, common
block, entry point, group, or file exceeds
seven characters in length. If this error
occurs in a command sequence body, it is
detected at collect time.

The name of a COBOL data item, supplied in a
CID commmand, is longer than 30 characters.

A reference has been made to a common block
xxxx which does not exist; or if an overlay
qualifier has been supplied, the common block
is not in that overlay.

A reference has been made to an entry point
name xxxx which does not exist; or if an
overlay qualifier has been supplied, the entry
point is not im that overlay.

An attempt was made to reference a FORTRAN
statement with label n. No such statement
exists in the referenced program, or the
statement is nonexecutable.

The file or group named in a READ parameter
does not exist.

Enter HELP * for a list of
valid parameters. Reenter
the HELP command with a
valid parameter.

Reenter with a correct
parameter type.

Correct and reenter.

Enter HELP followed by the
command name to obtain the
valid syntax for the com~

mand. Correct and reenter.

Reenter with a valid trap
type.

Reenter with a valid type.
Reenter with a valid label.

Check the home program.

Reenter with a valid code
for the parameter, or omit
the parameter.

Correct and reenter.

Correct and reenter.

Correct and reenter.

Check spelling; correct
and reenter.

Check spelling or overlay
qualifier; correct and
reenter.

Check the program listing;
correct and reenter.

Check spelling; check to
see if the file is logi-
cally connected to the job.

B-3

TABLE B-1. ERROR MESSAGES (Contd)

Message

Significance

Action

*ERROR - NO LABEL xxxx
l *ERROR — NO LOOKUP
IMPLEMENTED

*ERROR — NO OVERLAYS

*ERROR ~ NO OVERLAY (xxxx)

*ERROR — NO PROCEDURE
NAME xxxx

*ERROR - NO PROGRAM xxxx

*ERROR - xxxx NOT INTEGER

*ERROR - OPTION CODE MUST
BE B, D, E, I, R, T, OR W

*ERROR - xxxx OUTSIDE
-131071 TO 131071

*ERROR - PARAMETER MUST BE
NORMAL OR ABNORMAL

*ERROR - PARAMETER MUST
BE ON OR OFF

*ERROR - PARAMETER
REFERENCED BEFORE FIRST
SUBROUTINE CALL

*ERROR - PROGRAM xxxx NOT

CALLED

*ERROR — PROGRAM xxxx NOT
LOADED

*ERROR — PROGRAM HAS
COMPLETED

*ERROR — NO PROGRAM VARIABLE

A JUMP command has referenced a label which
does not exist in the current command sequence

Language not supported by CID; therefore,
symbol table lookup is not implemented.

An overlay reference has been made in a non-—
overlay enviromment. This error is detected at
collect time if it occurs in a command sequence
body or if a specific overlay is referenced.
The specified overlay does not exist. LIST,MAP
indicates all existing overlays.

An attempt was made to reference procedure
name xxxx, but no such procedure name exists
in the procedure division of the home program.

A reference has been made to a program module
xxxx which does not exist; or if an overlay
qualifier is supplied, the program module is
not in that overlay.

An attempt was made to reference variable xxxx
but no such variable exists in the referenced
or home program. LIST,VALUES lists the names
and values of all loaded variables.

A COBOL CID command contains a subscript or
reference modification that has digits to the
right of the decimal point.

An invalid option code was specified in the
option list of a SET,OUTPUT or SET,AUXILIARY

command .

A subscript or reference modification in
a COBOL CID command is less than -131071
or greater than 131071.

An invalid parameter was supplied with QUIT.

Valid parameter values for SET,INTERPRET are
ON and OFF.

A reference has been made to a formal argument
of a FORTRAN subroutine or function prior to
ever reaching its first executable statement.
In this circumstance, the address of any formal
parameter is unknown, and its value is unde-
fined (as indicated in LIST,VALUES).

TRACEBACK cannot proceed because an entry
point in the specified program has never been
called.

TRACEBACK cannot proceed because the program
being referenced is in an overlay which is not
currently loaded.

An attempt has been made with either GO or
EXECUTE to continue program execution from
the point where program termination has been
reached.

Correct the command
sequence accordingly.

Check source language
of the home program.

Confine CID commands and
address qualifiers to
those acceptable in a
nonoverlay environment.

Reenter with the corrected
overlay designation.

Check spelling of procedure
name and home program de-
signation.

Correct and reenter.

Check spelling and home
program.

Reenter with integer sub-
script or reference modi-
fication.

Reenter with all valid
option codes.

Reenter with a valid
subscript or reference
modification.

Reenter with NORMAL or
ABNORMAL.

Reenter with a valid
parameter value.

Allow execution to proceed
until entry into the rou-
tine has been reached
before referencing formal
parameters.

Enter another command.

Enter another command.

Reenter specifying some
other execution address,
or issue QUIT,

60481400 D

TABLE B-1. ERROR MESSAGES (Contd)

Message

Significance

Action

*ERROR - RANGE ADDRESSES
IN DIFFERENT MEMORIES

*ERROR - RANGE OF DEBUG
VARTABLES NOT ALLOWED

*ERROR - REBUILD FILE
2ZZZZDT

*ERROR - RECURSIVE CALL TO
ENTRY POINT xxxx

*ERROR - RECURSIVE READ OF
XXXX

*ERROR — REFERENCE MOD
OUT OF RANGE

*ERROR - RELATION CODE MUST
BE EQ, NE, GT, GE, LT, OR LE

*ERROR - RELATIVE ADDRESS
OUTSIDE BLOCK

*ERROR - RESPONSE QUALIFIER
MUST BE LINE OR SEQ

*ERROR - SET CANT DO THIS
*ERROR — STATEMENT LABELS
NOT AVAILABLE

*ERROR - STRING/CONSTANT
TOO LONG

*ERROR - SUBSCRIPT OUT OF
RANGE

*ERROR - TOO FEW PARAMETERS

*ERROR - TOO MANY
BREAKPOINTS

*ERROR - TOO MANY GROUPS

60481400 D

An address range in the form

address l...address 2 has a CM address and an

extended memory address. Both addresses must

be for the same memory. An indirect reference
is assumed to be a CM reference.

An address range in the form #xx...#yy has been
encountered. This form is not valid, since #xx
and #yy alone represent variables rather than
addresses.

CID is unable to use debug tables from old
222ZZDT file. }

TRACEBACK has encountered the same entry point
for a second time. Program logic flow is in
error.

The group ot file named in the current READ
parameter is a nested command sequence or the
current sequence.

A reference modification in a COBOL CID
command is zero or greater than the size
of the data item.

The SKIPIF relational operator must be EQ, NE,
GT, GE, LT, or LE.

A module offset is equal to or greater than its
length. LIST,MAP gives the program length.

In response to an error, warning, veto, or
interrupt of a command sequence, a response
keyword has been followed by text beginning
with other than LINE, SEQ, or : (colon).

A COBOL CID SET command has an illegal
combination of types.

Referenced program is not a high level program
compiled for use with CID.

A character string in a FORTRAN arithmetic
expression exceeds 41 characters.

Subscript for BASIC variable or COBOL data item
is out of range.

At least one additional parameter is required.
If this error occurs in a command sequence body,
it is detected at collect time. Some commands
do not default the last parameter, but require
an asterisk.

The number of breakpoints has reached the maxi-
mum allowed.

The number of groups has reached the maximum
allowed.

Correct and reenter.

Replace with #xx+0...#yy+0.

Make sure that the release
level of LOADER is the same
as CID. Reload program to
create new ZZZZZDT file.

Direct debugging efforts
towards locating the logic
flow error.

Redesign sequence logic to
avoid this situation.

Reenter with a valid
reference modification.

Reenter with a valid code.

Check for the missing octal
suffix B on the offset
value if octal was
intended. Correct and
reenter.

Enter any desired valid
response.,

Correct and reenter.

Check the home program.

Correct and reenter.

Correct and reenter.

Where other than a last
parameter is being de-
faulted, indicate by using
two consecutive commas,
Check the syntax of the
command, and reenter.

One or more existing break-—
points must be cleared
before any new ones can be
set.

One or more existing
groups must be cleared
before any new ones can be
set.

TABLE B-1. ERROR MESSAGES (Contd)

Message

Significance

Action

*ERROR - TOO MANY NESTED
COMMAND SEQUENCES

*ERROR - TOO MANY PARAMETERS

*ERROR - TOO MANY TRACE
LEVELS

*ERROR - TOO MANY TRAPS

*ERROR — TOO MANY/FEW
SUBSCRIPTS

*ERROR - UNKNOWN COMMAND

*ERROR - VALUE OUT OF RANGE
OR INDEFINITE

*ERROR — VARIABLE NAMES NOT
AVAILABLE

*ERROR - VERY LONG CONSTANT

*ERROR —~ WRITING INTO RA+1

*ERROR ~ ZERO INCREMENT FOR
INDEX xxxx IN DO LOOP

*ERROR - ZERO OR NEGATIVE
COUNT

The number of nested command sequences has
reached the maximum allowed. A READ or PAUSE
command is not allowed until the current se-
quence is terminated and the previous sequence
is resumed.

Too many parameters have been supplied. If
this error occurs in a command sequence body,
it is detected at collect time.

The TRACEBACK output has reached its built-in
feasibility limit. Program logic flow could
have errors.

The number of traps has reached the maximum
allowed.

Incorrect number of subscripts used in an
array element reference.

The command text does not contain a syntac-
tically recognizable command name. If this
error occurs in a command sequence bedy, it is
detected at collect time. HELP,CMDS list all
valid command names.

A FORTRAN expression in an IF, PRINT, or assign-
ment statement has evaluated to an out of range
or indefinite result. That is, overflow has
occurred.

Referenced program is not a high level program
compiled for use with CID.

Constant in MOVE, ENTER, or DISPLAY command is
too long.

Attempt was made to set breakpoint at RA+l.

The increment for the indicated index of an
implied DO loop in a PRINT list is zero. Both
positive and negative values are valid,
allowing subscripted variable elements to be
printed in ascending or descending subscript
order.

The count parameter of a DISPLAY, ENTER,
MOVE, or STEP command is zero or negative.

Enter GO to resume the

previous sequence
immediately.

Correct and reent

Correct and reent

Clear one or more
traps before sett
ones.

Correct and reent

Check spelling.

valid command.

Correct and reent

Check the home pr

Correct and reent

Correct and reent

Correct and reent

ere.

ere

existing
ing new

er.

Reenter a

€ere.

ogram.

er.

er.

er.

Reenter with a positive

value.

TABLE B-2. WARNING MESSAGES

Message

Significance

*WARN - ADDRESS RANGE WILL BE
TRUNCATED

*WARN - ALL WILL BE CLEARED

B-6

mately) locations.

issued with no parameters.

An address range for ENTER, DISPLAY, or MOVE extends beyond the
user field length or into DBUG. beyond the first 100 (approxi-

A CLEAR,TRAP, CLEAR,BREAKPOINT, or CLEAR,GROUP command has been

60481400 C

TABLE

B-2. WARNING MESSAGES (Contd)

Message

Significance

*WARN - ARGUMENT LENGTHS DISAGREE -
SUBROUTINES WILL BE USED

*WARN - BREAKPOINT WILL BE SET AT
ENTRY POINT

*WARN — DATA WILL BE MOVED WITHOUT
EDITING

*WARN — DESTINATION IS GROUP OR
EDITED

*WARN ~ EXISTING AUXILIARY FILE WILL
BE CLOSED
*WARN - EXISTING BREAKPOINT WILL BE
REDEFINED

*WARN — EXISTING SUSPEND FILE WILL BE
OVERWRITTEN

*WARN - FORMAL PARAMETER LENGTH ERROR

*WARN - GROUP xxx WILL BE REDEFINED

*WARN - LINE n NOT EXECUTABLE - LINE m
WILL BE USED

*WARN - MOVE TO GROUP LEVEL ITEM

*WARN - PERMANENT SUSPEND FILE WILL BE
RETURNED

*WARN - PROGRAM xxx HAS n ENTRIES - yyy
WILL BE TRACED

*WARN - STRING OVERFLOW - STRING WILL
BE TRUNCATED

*WARN ~ SUBSCRIPT OUT OF RANGE
*WARN — TRAP #n, type, qualifiers,
WILL BE CLEARED

*WARN - WRITING INTO RA+1

Length of FORTRAN 5 type character formal argument does not agree
with length of actual character string passed. Problem can be a

program error,

This warning is issued only if the specified address is an entry
point, but was not specified as such in a SET,BREAKPOINT command.

Although the receiving data field in a COBOL CID MOVE command is
alphabetic edited, alphanumeric edited, or numeric edited, the
source field will be moved to the receiving field without
editing.

The receiving item in a COBOL CID MOVE command is a group or
edited item. If you allow the data to be moved, no editing will
take place.

A SET,AUXILIARY command has been issued which specifies a file
name different from that of the existing auxiliary file.

An attempt is being made to set a breakpoint where one already
exists. A positive acknowledgment causes the new definition to
override the old one.

A SUSPEND command has been issued while a suspend file exists.
The existing file could be due to a SUSPEND command issued
earlier in the terminal session, prior to the current Debug
session.

Character length of the formal parameter differs from that of
the symbol table.

The name supplied in a SET,GROUP command is that of a currently
existing GROUP. A positive acknowledgment causes the new defi-
nition to override the old one.

The specified line number is not executable or is nonexistent.
A positive acknowledgment causes line m to be used instead.

A COBOL CID MOVE command specified the data name of a group item
as the receiving field. A move to a group item does not cause
conversion of the source data to the usages of the elementary
data items within the group level receiving field.

A SUSPEND command has been issued while a permanent suspend file
exists without write or modify access.

The TRACEBACK command processor issues this warning when more
than one entry point is encountered in a program module being
traced. A positive acknowledgment results in a continuation of
the traceback at yyy.

You are attempting to assign a string longer than 131070 6-bit
characters to a BASIC program variable. A positive response
causes a 131070 character string to be assigned.

A subscript for a FORTRAN variable in an IF, PRINT, or assignment
statement is out of range. If a positive response is entered,
the subscript value is accepted, resulting in the use of a loca-
tion beyond that defined for the variable.

A pending SET,TRAP command has a scope which overlays the scope
of an existing trap of the same type. A positive acknowledgment
CLEARS trap #n.

ENTER or MOVE command, if processed, will write into location
RA+1.

60481400 D

TABLE B-3. INFORMATIVE MESSAGES

Message

Significance

ASCII MODE MISMATCH BETWEEN
PROGRAM AND I/0 DEVICE

COMMAND LINE TOO LONG - EXCESS
CHARACTERS DISCARDED

CYBER INTERACTIVE DEBUG

CYBER INTERACTIVE DEBUG RESUMED

DEBUG ABORTED

DEBUG SUSPENDED

DEBUG TERMINATED

END COLLECT

IN COLLECT MODE (,LEVEL n)

INTERRUPT IGNORED

INTERRUPTED

INTERPRET MODE TURNED OFF

INTERPRET MODE TURNED ON

INVALID x TREATED AS ;

LAST RESPONSE LINE IS DISCARDED

B-8

Either the BASIC program is declared to be in ASCII mode and the
I/0 device is not in ASCII, or the I/0 device is in ASCII and the
program is not. The program can continue to be debugged, but the
data input and output by CID may not be what you expect. This
message is always issued when debugging ASCII programs under NOS/BE,
since CID does not support ASCII mode input and output under NOS/BE.

The command line contains more than 150 6-bit characters or 75
12-bit escape code ASCII characters. A syntax error will result if
part of a command was discarded.

After the program to be debugged has been loaded, this message is
issued when CID receives control. An initial set of traps and/or
breakpoints should be established at this point before starting pro-
gram execution.

A debug session has been resumed from the point where it was sus-—
pended. The system command statement DEBUG (RESUME) has been
entered following the issue of a SUSPEND command.

This message is issued in response to QUIT,ABORT; it appears in the
dayfile as well.

This message is issued in response to a SUSPEND command; it appears
in the dayfile as well.

This message is issued in response to QUIT or QUIT,NORMAL; it
appears in the dayfile as well.

Sufficient right brackets have been encountered to reduce the
collect level to zero, thus ending collect mode. Interactive
command mode is resumed; entered commands are immediately
executed.

This message occurs when you receive CID control in collect

mode; this was not the case when you last had control. Any
subsequent commands entered will no longer be executed immediately,
but will be checked for syntax and collected into a body or group
for future execution. Level n is included in the message if a
nested collect is in effect (n is greater than one). To end collect
mode, n right brackets are required.

CID was already in interactive command mode when a terminal inter-
rupt occurred. Since the purpose of a terminal interrupt is to
place CID in interactive mode, the interrupt is ignored.

A terminal interrupt has occurred while a command sequence or a
command which takes a list as a parameter was executing.

As a result of clearing one or more traps, no traps remain that
require interpret mode to be on. Subsequent program execution will
be by direct execution of the machine instructions.

A SET,TRAP command has been issued with a trap type that requires
interpret mode of program execution, and, currently, interpret mode
is off. Subsequent program execution will be by interpreting all
machine instructions.

A left bracket was found following a command other than SET,TRAP,
SET,BREAKPOINT, or SET,GROUP; or a right bracket was found after a
statement while not in collect mode.

Command keyed—in as response to an error, warning, or interrupt
prompt has issued an error or warning prompt. However, the total
number of pending command sequences is equal to the highest number
permitted and, therefore, the last response line has been discarded.

60481400 C

TABLE B-3. INFORMATIVE MESSAGES (Contd)

Message
| == e
NO BREAKPOINT xxxx

NO BREAKPOINT #n

NO BREAKPOINTS

NO GROUP xxxx
NO GROUP #n

NO GROUPS

NO SYMBOLS FOR OVERLAY (m,n)
NO SYMBOLS FOR P.xxxx

NO xxxx TRAP yyyy

NO TRAP #n

NO TRAPS

OVERLAY (m,n) NOT LOADED

PAUSE IGNORED FROM TERMINAL

PROGRAM xxxx NOT LOADED

TIME LIMIT

TRAP NUMBER IGNORED IN THIS CONTEXT

USER PROGRAM INTERRUPT PENDING

USER RECOVER ROUTINE COMPLETED,
x REQUESTED

VARIABLE NAMES NOT AVAILABLE FOR xxx

Significance

A request has been made to LIST, CLEAR, or SAVE a breakpoint at
‘location xxxx. No such breakpoint exists. Any remaining list ele-
ments are processed.

A request has been made to LIST, CLEAR, or SAVE a breakpoint #n
which does not exist. Any remaining list elements are processed.

There are no breakpoints to LIST, CLEAR, or SAVE.

A request has been made to LIST, CLEAR, or SAVE a group xxxx which
does not exist. Any remaining list elements are processed.

A request has been made to LIST, CLEAR, or SAVE a group #n which
does not exist. Any remaining list elements are processed.

There are no groups to LIST, CLEAR, or SAVE.

A list element in a LIST,VALUES command specified an overlay that
does not contain any user variables.

A list element in a LIST,VALUES command specified a program module
that does not contain any user variables.

A request has been made to LIST, CLEAR, or SAVE a user—defined trap
of type xxxx with scope yyyy. No such trap exists. Any remaining
list elements are processed.

A request has been made to LIST, CLEAR, or SAVE a user-—defined
trap #n which does not exist. Any remaining list elements are proc-
essed.

There are no trap definitions to LIST, CLEAR, or SAVE. Note that
the three default traps, END, ABORT, and INTERRUPT, are never
listed, cleared, or saved.

A list element of a LIST,VALUES command has specified an overlay
which is not currently loaded. Any remaining list elements of the
LIST,VALUES command are processed.

This message results from entering PAUSE while in interactive (non-
collect) mode.

A list element in a LIST,VALUES command specified a program module
that has not been loaded. Any remaining list elements are
processed.

A time limit interrupt has occurred while either the program or a
command sequence was executing. A small amount of time is left,
sufficient to do a SAVE * and QUIT. To continue the session, enter
SUSPEND followed by DEBUG(RESUME).

A trap number has been specified as a list element in a LIST,TRAP,
CLEAR,TRAP, or SAVE,TRAP command of a form for which trap numbers
are not allowed. Any remaining list elements are processed.

A terminal interrupt was detected while executing a high level
language program compiled for use with CID. However, control was
given to you first for some other reason besides result of the inter-
rupt, such as a breakpoint or another type of trap. The pending
interrupt will be acknowledged with an interrupt trap when the
program execution is resumed.

CID issues this message after the program has completed its
recover routine by making an ABORT or ENDRUN request.

Either program xxx is not a high level program, or it was not
compiled with the DB option explicitly specified or implicitly
specified (by debug mode being on).

60481400 C

GLOSSARY | C

Abort - }
To terminate a program or job when a condition
(hardware or software) exists from which the
program or computer cannot recovere.

Breakpoint -
A designated location in a program, where, if
reached during program execution, a suspension
of program execution occurs.

Common Block -
A module intended solely for storing data. As
an alternative to passing data to routines via
parameter values, a block of data can be
declared in common to both the calling routine
and the called routine.

Entry Point -
A location within a program that can be
referenced from other programs. Each entry
point has a unique name with which it is
associated.

Extended Memory -
An auxiliary storage unit capable of high speed
transfer to and from central memory. Refers to
units formerly known as Extended Core Storage
(ECS) and Large Central Memory (LCM).

Interactive -
Job processing 1in which you and the system
comnunicate with each other, rather than
processing in which you submit a - job and
receive output later.

Interpret -

The execution of computer machine instructions

by other than direct means. A special routine
called an interpreter examines each instruction
to be executed and simulates its execution by
the execution of several of its own
instructions. Execution in interpret mode
consequently takes 20 to 50 times as long as
direct execution.

Interrupt (Verb) -
To stop a running program in such a way that it
can be resumed at a later time.

Interrupt (Noun) -
A control signal that you issue from the
terminal. If your program is executing when
CID detects an interrupt, an INTERRUPT trap
occurs; if a CID command sequence is executing,
the command sequence is suspended and you gain
control.

60481400 C

On NOS, CID interprets both the user-break-1
and' the wuser-break-2 terminal keys as the
interrupt Kkey. The wuser-break—-l1 and user-
break-2 keys differ, depending on the terminal
type (see the Network Products Interactive
Facility reference manual). On most terminals,
these keys are CONTROL P and CONTROL T,
respectively; you can issue an interrupt by
pressing CONTROL P (or CONTROL T) followed by a
carriage .return.

On NOS/BE, you can 1issue an interrupt by
pressing either %S followed by a carriage
return or ZA followed by a carriage return.
(See the INTERCOM reference manual.)

Module ~
A named section of coding or data. Prior to
being loaded to form part of a program, modules
are called object modules; after being loaded,
they are called load modules.

Overlay -

A portion of a program, consisting of one or
more modules, which can share an allocated area
of memory with others of its kind. When access
to a particular module is required, the overlay
containing that module 1is loaded, thus
overlaying the previous contents of the memory
area allocated for that overlay.

Programs organized into overlays execute in an
overlay environment. Such a scheme allows

large programs to execute in a limited amount
of memory.

Program -
The completely loaded set of one or more object
modules. Such a set, where at least one of the
modules is user—written, constitutes a program
suitable for CID.

Program Module -
A module intended for program execution. A
program module always has an entry point, a
named location in the module to be used in
calling the module via the RJ instruction.

Trap (Verb) -
The automatic transfer of control to a
predefined location upon the detection of some
specified condition.

Trap (Noun) -
The established mechanism for detecting a
specified condition and causing a transfer of
control. As implemented in CID, the special
location to which control is transferred is in
CID itself.

PROGRAM STRUCTURE D

This section describes where the CID executive
module and your program are loaded in the field
length and which files are accessed by CID for
internal use.

PROGRAM LOAD

When a program is loaded, the loader reads the
program into memory and allocates addresses to all
of the program’s constituent modules. For programs
not organized into overlays, consecutively loaded
modules are allocated consecutive ascending address
areas.

CID can be used with programs having overlays if
one of the following is true:

The FORTRAN routine OVERLAY loads the overlays.
or

The entry point DEBUG.OV is called whenever an
overlay is loaded.

If a program 1is structured into overlays, that
structure has the following organization. The
first overlay in the program must be designated as
the main (root or zero) overlay. It is allocated
the lowest location in the program area of the

field length and is always present in memory. This
overlay 1is followed by the primary overlays.

Following each primary overlay are secondary
overlays, which are loaded beyond the end of their
corresponding primary overlays.

A load map can be produced, if desired, by in-
cluding a MAP,ON statement prior to calling for the
load and execution of the program to be debugged.

Alternatively, the CID LIST,MAP command can produce
load map information at any time during a debug
session. This command is described in section 5.

A load map lists each module name and the actual
starting address where each module is 1loaded.
Entry point names and their addresses can also be
listed. Each address given is the relative address

60481400 C

from the start of the user field length. A load
map also indicates if any modules are loaded in
extended memory.

The map obtained from the 1loader is different
according to whether debug mode is on or off. Two
additional modules are included in the load of the
program to be debugged when the program is loaded
with debug mode turned on. One module, named
DBUG., is allocated as the first module in the
program load. DBUG. 1is 1located in the object
library DBUGLIB. The other module, named UCLOAD,
is allocated as the last module in the load. Both
modules are loaded. automatically when a relocatable
object program is loaded with debug mode turned
on. The minimum field 1length requirement for
execution of your program is increased by the space
required for these two modules. Figure D-1 shows
the arrangement of code in the field length.

The presence of DBUG. in the load immediately
following the job communication area increases the
relative address at which each user module is
loaded by the size of the DBUG. module.

Field RA
Length Job Job
Communication Communication
Area Area
DBUG.
User
Program
User
Program
UCLOAD
Y #rL-1
DEBUG (ON) DEBUG (OFF)

Figure D-1. Loader Field Length Assignment

. BATCH CID FEATURES | E

NNNNNNNNNNNN_N_—_——_——_—

CYBER Interactive Debug is primarily intended to be
uged interactively, but can be used in batch. 1In
batch mode, you must place CID commands as the
first system logical record in the file DBUGIN.

Output from CID is always written to a file called
DBUGOUT. The type of output written to this file
is controlled by the same command as is used to
control output options to the terminal when CID is
used interactively. (See the SET,OUTPUT command.)
The default options for the standard output file in
batch mode are E, W, D, I, R, B, and T. CID output
can also be written to an auxiliary output file.
(See the SET,AUXILIARY command.)

Error processing in batch mode is handled in the
following manner:

® Commands in error are diagnosed and skipped.
The next command from the input stream is used
in place of the command in error.

e Commands that would normally give rise to

warning messages are accepted, as if an ACCEPT
response had been given in interactive mode.

60481400 C

e Veto mode is not effective in batch. The
command to establish veto mode will be
considered illegal in batch.

If the stream of commands on file DBUGIN is
exhausted and the CID attempts to read another
command, CID will behave as if the QUIT command had
been executed. (See the QUIT command.)

Commands such as PAUSE or SET,BREAKPOINT without a
body that would normally take input £from .the
terminal take it from DBUGIN in batch. In order to
use this feature, the commands on the DBUGIN file
must be carefully ordered with this in mind; it is
almost necessary to know in advance how the CID run
will go. However, as mentioned above, DBUGIN is
not accessed for responses in the error, warning,
and veto cases.

Note that the position of DBUGIN is preserved
across a SUSPEND/RESUME break.

USAGE CONSTRAINTS AND DEPENDENCIES

L~

The following CID usage constraints exist:

Since part of CID resides in the field length
below the 1lowest user routine, your program
must mnot store into the region between the
upper end of the job communication area and the
FWA of the lowest user routine. CID is not
protected from such damage, but it will prevent
the DISPLAY, ENTER, and MOVE commands from
being used to access this region.

You should not use self-modifying code since
this could overwrite breakpoint RJ instructions
planted in your program by CID. Because
FORTRAN generates self-modifying code, setting
of breakpoints in FORTRAN programs at locations
other than line numbers should be avoided.

CID cannot be used to debug programs loaded by
the segment loader.

CID cannot be used to debug programs that use
overlay capsules (OVCAPS).

CID cannot be used to debug COBOL programs that:
Have dynamically loaded subprograms

Have fixed overlayable or independent
segments

Use the Message Control System
Use the CYBER Database Control System (CDCS)

CID cannot symbolically debug programs that
have been loaded due to user call loading.
Note that it is possible to reference locations
in user call loaded programs by wusing their
absolute addresses.

CID cannot be used when loader debug facilities
(for instance, TRAPPER) are being used.

CID can only debug the most recently loaded
program. That is, it is not possible to go
through the sequence (LOAD(A), NOGO(ABSA),
LOAD(B), NOGO(ABSB), ABSA. The 1loader only
creates one file of tables for CID for each
LOAD. Thus, if the sequence just given were
executed, you would be trying to debug
program A using the tables of program B.

NOTE

This. limitation can be circumvented by
saving file ZZZZZDT, the CID tables
file, after NOGO(ABSA) and replacing it
before ABSA is executed.

60481400 D

Under NOS/BE, EDITLIB requires entry point
names in a library to be unique. When overlays
are generated with debug mode on, the entry
point DBUG= is included in the (0,0) overlay.
Thus, only one set of overlays generated in
debug mode can be included in a library. This
problem does not occur with relocatable
routines, because CID is included at load
time. (Under NOS, overlays cannot be stored in
libraries.)

Symbolic names that contain special characters
must be enclosed in dollar -signs (§) when the
names are entered in language-independent
commands, except as follows:

BASIC source language symbols that contain
dollar signs ($) do not have to be enclosed
in dollar signs.

COBOL source language symbols that contain
hyphens (-) do not have to be enclosed in
dollar signs.

You must specify only the first seven
characters of COBOL program module names in CID
commands.

CID cannot be used to debug programs that
establish a long term connect with a system
control point.

The multiple input file connect feature
available under NOS/BE cannot be used with CID.

The stacked input feature, whereby you can type
successive input lines before the input prompt
is received, should be avoided. If an error or
warning occurs, the pending stacked input will
be used as your response.

CID cannot be used to debug programs that
directly call RPV to request error reprieve
processing. Such usage would conflict with CID
procedure. Instead, programs should call the
COMPASS RECOVR macro or the FORTRAN RECOVR
subroutine to specify error reprieve proc-
essing. CID contains special versions of these
routines that provide proper interfacing to
CID. (BASIC programs call the FORTRAN RECOVR
subroutine when an ON ERROR condition occurs.
COBOL programs do not use error reprieve
processing.)

CID cannot display, list, or print dynamically
created arrays in BASIC; the array names are
not recognized by CID unless declared with a
DIM statement.

F-2

Buffer flushing of the terminal output buffer
of your program can only be accomplished if CID
knows about that file. Compiler produced
programs place entries in a list of files. A
COMPASS program must be writtem to do this as
well, or else CID will have no way of knowing
such a file exists. When CID gets control from
the program being debugged (for example, after
a breakpoint occurs), it attempts to flush the
prime terminal output buffer of the program, if
it needs to be flushed. CID will search the

file list, if any, established with the SETLOF
macro, or the file 1list starting at address
RA+2 for the first FET which indicates that it
is writing on a terminal type device. If such
a FET is found and if that FET indicates there
is data in its buffer, CID will flush the
buffer before interacting with you. This will
ensure that output generated by the program
before the break occurs is actually seen before
the break occurs. :

60481400 C

DEBUGGING HINTS A - G

The following suggestions can help you make more
efficient use of CID:

The . central memory requirements are increased
to approximately 550008 words when CID is
used with programs smaller than 51000g
words. When CID is used with programs larger
than 51000g words, central memory require-—
ments are increased by approximately 4000g
words.

In most cases, command sequences should be kept
quite simple. With complex command sequences,
a danger exists that more time will be spent
debugging the command sequences than in
debugging your program.

Issue an appropriate SAVE command each time
input collect mode 1is ended, rather than
sometime later in the debug session. This way,
if a definition is mistakenly cleared, the
definition can be reestablished by reading the
file, thus saving the need to reenter it from
the terminal.

Files created by the SAVE command are local
files. It is your responsibility to make these
files permament when desired for a future debug
session.

The auxiliary output file will not be saved or
disposed to the printer by CID after a QUIT
command. It is your responsibility to save or
print this file when desired.

Execution in interpret mode uses 20 to 50 times
more computer time than direct execution. This
fact should not discourage you from using
interpret mode at all, since some of CID’s most
powerful features require interpret mode of
execution. One way to keep run timings down to
an acceptable level is to turn interpret mode
off within program areas that have already been
debugged, especially those areas which account
for most of the execution time.

If an abort trap occurs with #CPUERR equal to
1, 3, or 7, the reason could be an attempt to
reference a location that was an unresolved
external reference.

When referencing high level program variables
in the home program, use language—dependent CID
commands (described in section 6) whenever
possible.

When the command references a debug variable or
a symbolic address, language-dependent commands
cannot be made.

In FORTRAN programs, a frequently occurring bug
is to pass too few parameters on a subroutine
call. This can be caught by issuing both a
STORE trap and a FETCH trap on location zero.
The trap will occur when the first reference is

60481400 C

made within the subroutine to the formal
variable corresponding to the first missing
parameter on the call.

The SUSPEND/RESUME facility can be wused to
provide a checkpoint/restart capability. This
capability allows you to save the debug session
at various times, and if program data areas are
damaged by program errors or CID commands, you
can return to the session as it was previously
saved.

To save the session, proceed as follows:

1. Enter the SUSPEND command with no
parameters.

2. Copy file ZZZZZDS to another file.
3. Enter the DEBUG (RESUME) control statement.

To return to the session as it was saved on
another file, perform the following sequence of
steps:

1. Enter the QUIT command.

2. Enter the DEBﬁG(RESUME,lfn) control state-
ment, specifying as 1fn the file to which
you copied ZZZZZDS.

Note that repositioning or closing of your
files will not take place when you perform

these sequences.

The reading of program input files can be
simulated with a suitable command sequence that
is invoked in place of the read. The sequence
should place distinet data values in those
locations normally updated by the read routine.

This technique eliminates the necessity of
preparing test data input files, and solves the
problem of user file positioning when using the
checkpoint/restart technique outlined above.

This technique also allows test data changes to
be made during the debug session simply by
issuing appropriate CID commands.

It is not possible to chain to another program
when CID is in control in the BASIC subsystem.
When a CHAIN statement is encountered in a
BASIC program, an END trap occurs.

In order to use the CHAIN statement, use the
QUIT command on the current debug session and
manually issue the appropriate system commands
to compile and execute the new program. In
NOS, the chained-to program will already have
been made the primary file.

Avoid using the language—independent ENTER,
MOVE, and DISPLAY commands with COBOL data
items and BASIC string variables. These types
of data are not word—-aligned.

INDEX

—

Abort (definition) C-1

ABORT information variables 4-6
ABORT trap 3-2, 3-4

Absolute addresses 4-1

Accessing CID 2-1

Addition operator 4-8

Address range 4-4

Addresses 4-1

Assignment command (FORTRAN) 6-5
Automatic execution of CID commands 3-7
Auxiliary output file 2~-2, 5-1, 5-8

BASIC features
BASIC CID commands 6-1
BASIC symbols 4-3
Compilation 2-1
LINE trap 3-3
LIST,VALUES command 5-5
STEP command 5-18
#LINE debug variable 4-5 N
Batch CID features E-1
Blank (or unlabeled) common block 4-2, 4-4
Block referencing 4-4
Bodies 3-7 :
Breakpoint
CLEAR ,BREAKPOINT command 5-1
Command sequence bodies 3-7
Description 3-1, C-1
LIST,BREAKPOINT command 5-3
SAVE ,BREAKPOINT command 5-7
SET ,BREAKPOINT command 5-9

Central memory field length D-1
Character sets A-1
CID concepts 3-1
" CID features 1-1
CLEAR commands 5-1
CLEAR,AUXILIARY command 5-1
CLEAR ,BREAKPOINT command 5-1
CLEAR,GROUP command 5-1
CLEAR, INTERPRET command 5-2-
CLEAR,OUTPUT command 5-2
CLEAR,TRAP command 5-2
CLEAR,VETO command 5-2
COBOL features
COBOL CID commands 6-2
COBOL symbols 4-3
Compilation 2-1
LINE trap 3-3
LIST,VALUES command 5-5
PROCEDURE trap 3-4
STEP command 5-18
#LINE debug variable 4-5
#PROC debug variable 4-5
Collect mode 3-7
Command sequences 3-7
Command syntax 4-1, 6-1
Command types 4-1
Comment 4-~1
Common Block 4-2, 4-4, C-1
Compilation 2-1

60481400 C

Conditional commands
BASIC IF command 6-1
FORTRAN IF command 6-6

Language—independent SKIPIF command 5-17

Constraints PF-1

DBUG. module D-1
DB=ID compiler option 2-1
DEBUG control statement 2-1
Debug mode
Compilation 2-1
Execution 2-2
Debug Session 1-1, 8-1
Debug state variables 4-5
Debug user variables 4-5
Debug variables 4-5
Debugging hints G-1
Default traps 3-4
Dependencies F-1
Diagnostics 7-1, B-1
DISPLAY command
COBOL 6~3
Language—independent 5-12

ECS/LCM addresses 4-1, 4-4
Editing a command sequence 3-7
Ellipsis 4-4
END trap 3-2, 3-4
ENTER command 5-13
Entry points 4-2, C-1
Error
Messages B-1
Processing 7-1
Responses 7-2
Example debug sessions 8-1
EXECUTE command 5-14
Execution address ramge 5-11
Execution under CID control 2-2
Expressions 4-6
Extended memory
Addresses 4-1, 4-4
Definition C-1

Features 1-1
FETCH trap 3-3
Files
CID environment 2-3, 5-7
Command Sequence 3-7
Input 2-2
Output
Auxiliary output file 2-2, 5-1, 5-8
Standard output file 2-2, 5-2, 5-10
Scratch files 2-3
Suspend file 2-3
FORTRAN features
Compilation 2-2
FORTRAN CID commands 6-5
FORTRAN symbols 4-3
LINE trap 3-3
LIST,VALUES command 5-5
STEP command 5-18
#LINE debug variable 4-5

Index-1

Glossary C-1
GO commands
BASIC GOTO 6~1
COBOL GO TO 6-3
FORTRAN GOTO 6-6
Language-independent GO 5-14
Groups
CLEAR,GROUP command 5-1
Description 3-7
LIST,GROUP command 5-3
READ command 5-17
SAVE ,GROUP command 5-7
SET,GROUP command 5-9

HELP command 5-14

High level language features
Compilation 2-1
Debug variables 4-5
Language—dependent commands 6-1
LIST,VALUES command 5-5
Source language symbols - 4-3
STEP command 5-18
Traps 3-3, 3-4

Hints G-1

Home program
Addresses 4-2
Designation when execution is suspended 3-1
SET ,HOME command 5-9

Identifiers 4-3

IF command
BASIC 6-1
FORTRAN 6-6

Indirect addressing 4-9
Informative messages B-1
INSTRUCTION trap 3-3
Integers 4-4
Interactive C-1
Interpret C-1
Interpret mode
CLEAR, INTERPRET command 5-2
Description 3-6
SET, INTERPRET command 5-10
Variables 4-6
Interrupt
Definition C-1
INTERRUPT trap 3-3, 3-4
Processing 7-1
Responses 7-2
Introduction 1-1

JUMP command 5-15
JUMP trap 3-3

LABEL command 5-15
Labeled common block 4-2, 4-4
Language-dependent commands 6-1
Language—independent commands
Descriptions 5-1
Syntax 4-1
LET command 6-2
Line numbers 4-3
Line sequences 3-7
LINE trap 3-3
LIST commands 5-3
LIST ,BREAKPOINT command 5-3

Index-2

LIST,GROUP command 5-3

LIST ,MAP command 5-5

LIST,STATUS command 5-5

LIST,TRAP command 5-5

LIST,VALUES command 5-5

Load map 5-5, D-1

Loader field length assignment D-1
Loading programs D-1

Locations 4-1

MAT PRINT command 6-2
MESSAGE command 5-15
Module 4-2, 4-4, C-1
Module referencing 4-2, 4-4
Module relative addresses 4-2
MOVE command
COBOL 6-4
Language-independent 5-15

' Negative keywords 7-2

Notations xi
NULL command 5-16, 7-2
Numeric constants 4-4

Octal comstants 4~5
Operators 4-8
Output options 5-9, 5-11
Overlay
Addresses 4-2
Definition C-1
OVERLAY trap 3-3

PAUSE command 5-16
Positive keywords 7-2

PRINT command
BASIC 6-2

FORTRAN 6-6
Procedure names 4-3
PROCEDURE trap 3-4
Program C-1
Program load D-1
Program module C-5
Program state variables 4-5
Program structure D-1

QUIT command 5-17

READ command 3-7, 5-17
Register state variables 4-6
Relative addresses 4-2
Report level 3-2, 5-11
Reprieve code 3-2, F-1
Response keywords 7-2

RJ trap 3-4

Sample debug sessions 8-1
SAVE commands 5-7

SAVE ,BREAKPOINT command 5-7
SAVE ,GROUP command 5-7
SAVE,,TRAP command 5-7
SAVE,* command 5-7
Sequences 3~7

60481400 C

SET commands
COBOL 6-4
Language-independent 5-7
SET,AUXILIARY command 5-8
SET,BREAKPOINT command
Collect mode 3-7
Description 5-9
SET,GROUP command
Collect Mode 3-7
Description 5-9
SET,HOME command 5-9
SET, INTERPRET command 5-10
SET,OUTPUT command 5-10
SET, TRAP command
Collect mode 3-7
Description 5-11
SET,VETO command 5-12
SKIPIF command 5-17

Source language symbols 4-3
Statement labels 4-3

STEP command 5-~18

STORE trap 3-4

Subtraction operator 4-8
SUSPEND command 5-19

Suspend/resume capability 2-1, 3-7, 5-19

TIME LIMIT 3-2

TRACEBACK command 5-19

Trap
Action 3-4
CLEAR, TRAP command 5-2
Command sequence bodies 3-7
Description 3-2, C-1
LIST,TRAP command 5-5
SAVE,TRAP command 5-7
SET, TRAP command 5-11
Types 3-2, 5-11

UCLOAD module D-1

Unlabeled (or blank) common block 4-2, 4-4
Usage constraints and dependencies F-1

Value operator (!) 4-8
Values 4-4
Variables

BASIC 4-3

Debug 4-5

FORTRAN 4-4

60481400 D

Veto mode
CLEAR,VETO command 5-2
Definition 7-1
Processing 7-1
Responses 7-2
SET,VETO command 5-12, 7-1

Warning
Messages B-1
Processing 7-1
Responses 7-2

XJ trap 3-4

272272Zps 2-1, 5-19, G-1
Z2ZZZpT 2-3, F-1

#A debug variable 4-8

#B debug variable 4-8

#BP debug variable 4-5

#CPUERR debug variable 4-5

#EA debug variable 4-7

#ERRCODE debug variable 4-5

#EW debug variable 4-7

#FE debug variable 4-5

#FL debug variable 4-5

#GP debug variable 4-5

#HOME debug variable 4-5

#1 debug variable 4-7

#INS debug variable 4-7

#INSL debug variable 4-7

#J debug variable 4-7

#K debug variable 4-7

#LINE debug variable 4-5

#0P debug variable 4-7

#P debug variable 4-5

#PA debug variable 4-7

#PARCEL debug variable 4-7

#PC debug variable 4-7

#PROC debug variable 4-5

#REG debug variable 4-8

#TP debug variable 4-5

#1,...,#V10 debug variables &4-5

#X debug variable 4-8
Underline in addresses 4-2

! Value operator 4-8

Index~3

INN ONOW 1ND

COMMENT SHEET

MANUAL TITLE: CYBER Interactive Debug Version 1 Reference Manual
PUBLICATION NO.: 60481400

REVISION: D

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested
additions or deletions, or general comments on the back (please include page number

references).
Please reply No reply necessary
FOLD FOLD
NO POSTAGE
NECESSARY
F MAILED
IN THE
UNITED STATES
|
BUSINESS REPLY MAIL | EEE—
FRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]
]
POSTAGE WILL BE PAID BY T
CONTROL DATA CORPORATION e ——
. L]
Publications and Graphics Division i
L]
P.0. BOX 3492 P —
Sunnyvale, California 94088-3492 ——
]
L]
.
FOLD FOLD
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE
NAME:
COMPANY :

STREET ADDRESS:

CITY/STATE/ZIP:

TAPE TAP

=1

BASIC CID COMMANDS

Command Format

GOTO line-number

IF relexp THEN command
[LET] variable = expression
MAT PRINT array-list

PRINT output-list

COBOL CID COMMANDS

Command Format

DISPLAY output-list

GO [TO] place

MOVE value TO data-item
TO value

SET name { UP BY amount
DOWN BY amount

FORTRAN CID COMMANDS

Command Format

variable = expression

GOTO statement-label

IF (logical expression) command
PRINT*,output-list

Page
6-3
6-3
6~4

6~4

(Language-independent commands are shown on the inside front cover.)

60481400 C

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN. 55440 LITHO IN US.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G2

CONTROL DATA CORPORATION

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12.0
	5-12.1
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	D-01
	E-01
	F-01
	F-02
	G-01
	Index-01
	Index-02
	Index-03
	replyA
	xBackA
	xBackB

